Suppr超能文献

用于卓越电荷分离和一氧化碳光还原性能的3D交织碳化硅/石墨相氮化碳结构

3D Interwoven SiC/g-CN Structure for Superior Charge Separation and CO Photoreduction Performance.

作者信息

Shao Honglei, Heng Mingyu, Guo Jing, Yang Ruiyi, Zhang Handong, Fan Jinchen, Li Guisheng, Miao Yingchun, Xiao Shuning

机构信息

School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.

College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.

出版信息

Langmuir. 2025 Jan 14;41(1):1115-1125. doi: 10.1021/acs.langmuir.4c04436. Epub 2024 Dec 25.

Abstract

To address the limitations of carbon nitride in photocatalysis, we propose constructing a three-dimensional interwoven SiC/g-CN composite structure. Utilizing the strong microwave-thermal conversion characteristics of SiC whiskers, localized "hot spots" are generated, which induce rapid thermal gradients, promoting rapid polymerization of urea and in situ formation of the interwoven network. This unique structure strengthens the interaction between these two components, creates multiple electron transport pathways, enhances CO adsorption, and effectively improves charge separation while reducing photogenerated carrier recombination. The CO generation rate of the composite catalysts under simulated sunlight approaches 17.78 μmol gh with 93.28% selectivity, three times more than pure g-CN. These findings offer innovative strategies for designing multiscale structures to enhance CO photocatalytic reduction. They also contribute to the development of sustainable catalysts for energy and environmental applications.

摘要

为解决氮化碳在光催化方面的局限性,我们提出构建一种三维交织的SiC/g-CN复合结构。利用SiC晶须强大的微波-热转换特性,产生局部“热点”,引发快速的热梯度,促进尿素的快速聚合以及交织网络的原位形成。这种独特的结构增强了这两种组分之间的相互作用,创造了多条电子传输途径,增强了CO吸附,并有效改善了电荷分离,同时减少了光生载流子的复合。复合催化剂在模拟阳光下的CO生成速率接近17.78 μmol g⁻¹ h⁻¹,选择性为93.28%,是纯g-CN的三倍。这些发现为设计多尺度结构以增强CO光催化还原提供了创新策略。它们也有助于开发用于能源和环境应用的可持续催化剂。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验