文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于应对铜绿假单胞菌感染的三作用策略的混合细胞膜工程纳米载体

Hybrid Cell Membrane-Engineered Nanocarrier for Triple-Action Strategy to Address Pseudomonas aeruginosa Infection.

作者信息

Zhang Shunhao, Chen Tianyu, Lu Weitong, Lin Yunfeng, Zhou Mi, Cai Xiaoxiao

机构信息

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.

Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, 610041, China.

出版信息

Adv Sci (Weinh). 2025 Feb;12(6):e2411261. doi: 10.1002/advs.202411261. Epub 2024 Dec 25.


DOI:10.1002/advs.202411261
PMID:39721013
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11809413/
Abstract

Bacterial infections resistant to antimicrobial treatments, particularly those caused by Pseudomonas aeruginosa (P. aeruginosa), frequently lead to elevated mortality rates. Tackling this resistance using therapeutic combinations with varied mechanisms has shown considerable promise. In this study, a bioinspired nanocarrier is successfully designed and engineered for targeted antibiotic delivery and toxin/bacteria clearance. This is achieved by encapsulating antibiotic-loaded framework nucleic acids with hybrid cell membranes acquired from neutrophils and platelets. By coating the hybrid membrane outside the shell, nanocarriers are endowed with the function of neutrophil-like chemotaxis and platelet-like bacteria adhesion to achieve the first stage of inflammation targeting. Based on the specific binding of bacteria toxin to the hybrid membrane, the release of antibiotic-loaded framework nucleic acids is triggered by toxin-mediated membrane lysis to fulfill the second stage of toxin neutralization and bacteria killing. Meanwhile, the immunomodulation potential of framework nucleic acids enables nanocarriers to accomplish the third stage of reversing the immunosuppressive microenvironment. In mouse models of acute and chronic P. aeruginosa pneumonia, the nanocarriers can reduce bacterial burden at a low dosage and decrease mortality with negligible toxicity. In sum, these findings have illustrated the remarkable capability of nanocarriers in treating recalcitrant bacterial infections.

摘要

对抗菌治疗耐药的细菌感染,尤其是由铜绿假单胞菌(P. aeruginosa)引起的感染,常常导致死亡率升高。使用具有不同作用机制的治疗组合来应对这种耐药性已显示出巨大的前景。在本研究中,成功设计并构建了一种受生物启发的纳米载体,用于靶向抗生素递送以及毒素/细菌清除。这是通过用从中性粒细胞和血小板获取的混合细胞膜包裹负载抗生素的骨架核酸来实现的。通过在外壳外部包覆混合膜,纳米载体被赋予了类似中性粒细胞的趋化功能和类似血小板的细菌黏附功能,以实现炎症靶向的第一阶段。基于细菌毒素与混合膜的特异性结合,毒素介导的膜裂解触发负载抗生素的骨架核酸释放,从而完成毒素中和及细菌杀灭的第二阶段。同时,骨架核酸的免疫调节潜力使纳米载体能够完成逆转免疫抑制微环境的第三阶段。在急性和慢性铜绿假单胞菌肺炎小鼠模型中,纳米载体能够以低剂量减轻细菌负荷,并降低死亡率,且毒性可忽略不计。总之,这些发现表明了纳米载体在治疗顽固性细菌感染方面具有显著能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57e5/11809413/7f2cdf06463a/ADVS-12-2411261-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57e5/11809413/0c9261f4d480/ADVS-12-2411261-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57e5/11809413/29ce1aaa38aa/ADVS-12-2411261-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57e5/11809413/1b972de3713d/ADVS-12-2411261-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57e5/11809413/e7b78f447a92/ADVS-12-2411261-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57e5/11809413/73024689a806/ADVS-12-2411261-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57e5/11809413/f80397251f73/ADVS-12-2411261-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57e5/11809413/18877799c4bc/ADVS-12-2411261-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57e5/11809413/7f2cdf06463a/ADVS-12-2411261-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57e5/11809413/0c9261f4d480/ADVS-12-2411261-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57e5/11809413/29ce1aaa38aa/ADVS-12-2411261-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57e5/11809413/1b972de3713d/ADVS-12-2411261-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57e5/11809413/e7b78f447a92/ADVS-12-2411261-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57e5/11809413/73024689a806/ADVS-12-2411261-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57e5/11809413/f80397251f73/ADVS-12-2411261-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57e5/11809413/18877799c4bc/ADVS-12-2411261-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57e5/11809413/7f2cdf06463a/ADVS-12-2411261-g007.jpg

相似文献

[1]
Hybrid Cell Membrane-Engineered Nanocarrier for Triple-Action Strategy to Address Pseudomonas aeruginosa Infection.

Adv Sci (Weinh). 2025-2

[2]
Colistin kills bacteria by targeting lipopolysaccharide in the cytoplasmic membrane.

Elife. 2021-4-6

[3]
Moxifloxacin-Loaded Polymeric Nanoparticles for Overcoming Multidrug Resistance in Chronic Pulmonary Infections Caused by .

ACS Appl Mater Interfaces. 2025-1-29

[4]
Enzyme-Linked Lipid Nanocarriers for Coping Pseudomonal Pulmonary Infection. Would Nanocarriers Complement Biofilm Disruption or Pave Its Road?

Int J Nanomedicine. 2024

[5]
Impact of the duration of antibiotics on clinical events in patients with Pseudomonas aeruginosa ventilator-associated pneumonia: study protocol for a randomized controlled study.

Trials. 2017-1-23

[6]
Enhanced efficacy of the engineered antimicrobial peptide WLBU2 via direct airway delivery in a murine model of Pseudomonas aeruginosa pneumonia.

Clin Microbiol Infect. 2017-9-4

[7]
Tailored multilayer nanoparticles against resistant P. aeruginosa by disrupting the thickened mucus, dense biofilm and hyperinflammation.

J Control Release. 2025-2-10

[8]
Sodium colistimethate loaded lipid nanocarriers for the treatment of Pseudomonas aeruginosa infections associated with cystic fibrosis.

Int J Pharm. 2014-12-30

[9]
Antimicrobial Peptide-Loaded Nanoparticles as Inhalation Therapy for Infections.

Int J Nanomedicine. 2020-2-17

[10]
Leveraging bacteria-inspired nanomaterials for targeted controlling biofilm and virulence properties of Pseudomonas aeruginosa.

Microb Pathog. 2024-12

引用本文的文献

[1]
Evolution of Resistant Mutants in Persister Cells Under Meropenem Treatment.

Microorganisms. 2025-7-16

[2]
A novel tetrahedral framework nucleic acid-based antibiotic delivery system: overcoming biofilm barriers to combat chronic infections.

J Nanobiotechnology. 2025-7-1

[3]
Vancomycin-Loaded Isogenous Membrane Vesicles for Macrophage Activation and Intracellular Methicillin-Resistant Elimination.

Int J Nanomedicine. 2025-6-17

本文引用的文献

[1]
Development of an Inhalable DNA Tetrahedron MicroRNA Sponge.

Adv Mater. 2025-1

[2]
Framework Nucleic Acid-Based Selective Cell Catcher for Endogenous Stem Cell Recruitment.

Adv Mater. 2024-12

[3]
Targeting modulation of intestinal flora through oral route by an antimicrobial nucleic acid-loaded exosome-like nanovesicles to improve Parkinson's disease.

Sci Bull (Beijing). 2024-12-30

[4]
A Multifunctional Nanocomplex as miRNA/Antibiotic Co-Delivery System Based on Tetrahedral Framework DNA: Application to Infected Wound Healing.

Small. 2024-12

[5]
A bioswitchable delivery system for microRNA therapeutics based on a tetrahedral DNA nanostructure.

Nat Protoc. 2025-2

[6]
A DNA tetrahedron-based nanosuit for efficient delivery of amifostine and multi-organ radioprotection.

Bioact Mater. 2024-5-21

[7]
Tetrahedral framework nucleic acids/hyaluronic acid-methacrylic anhydride hybrid hydrogel with antimicrobial and anti-inflammatory properties for infected wound healing.

Int J Oral Sci. 2024-4-16

[8]
Framework Nucleic Acids-Based VEGF Signaling Activating System for Angiogenesis: A Dual Stimulation Strategy.

Adv Sci (Weinh). 2024-6

[9]
Ultrasound-responsive catalytic microbubbles enhance biofilm elimination and immune activation to treat chronic lung infections.

Sci Adv. 2023-1-25

[10]
Codelivery of synergistic antimicrobials with polyelectrolyte nanocomplexes to treat bacterial biofilms and lung infections.

Sci Adv. 2023-1-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索