Zhang Shunhao, Chen Tianyu, Lu Weitong, Lin Yunfeng, Zhou Mi, Cai Xiaoxiao
State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, 610041, China.
Adv Sci (Weinh). 2025 Feb;12(6):e2411261. doi: 10.1002/advs.202411261. Epub 2024 Dec 25.
Bacterial infections resistant to antimicrobial treatments, particularly those caused by Pseudomonas aeruginosa (P. aeruginosa), frequently lead to elevated mortality rates. Tackling this resistance using therapeutic combinations with varied mechanisms has shown considerable promise. In this study, a bioinspired nanocarrier is successfully designed and engineered for targeted antibiotic delivery and toxin/bacteria clearance. This is achieved by encapsulating antibiotic-loaded framework nucleic acids with hybrid cell membranes acquired from neutrophils and platelets. By coating the hybrid membrane outside the shell, nanocarriers are endowed with the function of neutrophil-like chemotaxis and platelet-like bacteria adhesion to achieve the first stage of inflammation targeting. Based on the specific binding of bacteria toxin to the hybrid membrane, the release of antibiotic-loaded framework nucleic acids is triggered by toxin-mediated membrane lysis to fulfill the second stage of toxin neutralization and bacteria killing. Meanwhile, the immunomodulation potential of framework nucleic acids enables nanocarriers to accomplish the third stage of reversing the immunosuppressive microenvironment. In mouse models of acute and chronic P. aeruginosa pneumonia, the nanocarriers can reduce bacterial burden at a low dosage and decrease mortality with negligible toxicity. In sum, these findings have illustrated the remarkable capability of nanocarriers in treating recalcitrant bacterial infections.
对抗菌治疗耐药的细菌感染,尤其是由铜绿假单胞菌(P. aeruginosa)引起的感染,常常导致死亡率升高。使用具有不同作用机制的治疗组合来应对这种耐药性已显示出巨大的前景。在本研究中,成功设计并构建了一种受生物启发的纳米载体,用于靶向抗生素递送以及毒素/细菌清除。这是通过用从中性粒细胞和血小板获取的混合细胞膜包裹负载抗生素的骨架核酸来实现的。通过在外壳外部包覆混合膜,纳米载体被赋予了类似中性粒细胞的趋化功能和类似血小板的细菌黏附功能,以实现炎症靶向的第一阶段。基于细菌毒素与混合膜的特异性结合,毒素介导的膜裂解触发负载抗生素的骨架核酸释放,从而完成毒素中和及细菌杀灭的第二阶段。同时,骨架核酸的免疫调节潜力使纳米载体能够完成逆转免疫抑制微环境的第三阶段。在急性和慢性铜绿假单胞菌肺炎小鼠模型中,纳米载体能够以低剂量减轻细菌负荷,并降低死亡率,且毒性可忽略不计。总之,这些发现表明了纳米载体在治疗顽固性细菌感染方面具有显著能力。
ACS Appl Mater Interfaces. 2025-1-29
Int J Nanomedicine. 2020-2-17
Microorganisms. 2025-7-16
Adv Mater. 2025-1