Miyasaka Yuki, Maegawa Tomoki, Nagura Takuma, Kobayashi Misato, Babaya Naru, Ikegami Hiroshi, Horio Fumihiko, Ohno Tamio
Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan.
Department of Nutritional Sciences, Nagoya University of Arts and Sciences, 57 Takenoyama, Iwasaki-cho, Nisshin, Aichi 470-0196, Japan.
Exp Anim. 2025 Apr 20;74(2):264-275. doi: 10.1538/expanim.24-0071. Epub 2024 Dec 24.
Streptozotocin (STZ) is widely used as a pancreatic beta-cell toxin to induce experimental diabetes in rodents. Strain-dependent variations in STZ-induced diabetes susceptibility have been reported in mice. Differences in STZ-induced diabetes susceptibility are putatively related to pancreatic beta-cell fragility via DNA damage response. In this study, we identified two STZ-induced diabetes susceptibility regions in chromosome 11 (Chr11) of Nagoya-Shibata-Yasuda (NSY) mice via congenic mapping using the C3H-11 consomic strains, in which the entire Chr11 of STZ-resistant C3H/He (C3H) mice was replaced with that of NSY mice, and named them STZ susceptibility region for NSY (Ssnsy)-1 and -2, respectively. Screening for variants in the Ssnsy1 region revealed that NSY mice exhibited a characteristic missense c.599G>T (p.G200V) variant in a highly conserved region within the DNA repair gene, RAD50 double-strand break repair protein (Rad50). Subsequently, we generated R2B1-Rad50 knock-in mice, in which c.599T in Rad50 of STZ-susceptible C3H.NSY-R2B1 subcongenic mice was replaced with c.599G via genome editing. Compared with C3H.NSY-R2B1 mice, and R2B1-Rad50 knock-in mice showed suppressed hyperglycemia, incidence of diabetes, and decrease in plasma insulin levels following single high-dose and multiple low-dose injections of STZ. Our results suggest Rad50 as a susceptibility gene for STZ-induced diabetes that is involved in pancreatic beta-cell fragility. Forward genetic approaches using inbred mouse strains with STZ susceptibility as a phenotypic indicator will further elucidate the molecular mechanisms of pancreatic beta-cell destruction via DNA damage response.
链脲佐菌素(STZ)被广泛用作胰腺β细胞毒素,以在啮齿动物中诱导实验性糖尿病。在小鼠中已报道了STZ诱导的糖尿病易感性存在品系依赖性差异。STZ诱导的糖尿病易感性差异被推测与通过DNA损伤反应导致的胰腺β细胞脆性有关。在本研究中,我们通过使用C3H-11染色体置换系进行同源基因定位,在名古屋-柴田-安田(NSY)小鼠的11号染色体(Chr11)上鉴定出两个STZ诱导的糖尿病易感性区域,其中抗STZ的C3H/He(C3H)小鼠的整个Chr11被NSY小鼠的Chr11所取代,并分别将它们命名为NSY的STZ易感性区域(Ssnsy)-1和-2。对Ssnsy1区域的变异进行筛选发现,NSY小鼠在DNA修复基因RAD50双链断裂修复蛋白(Rad50)内的一个高度保守区域表现出特征性的错义c.599G>T(p.G200V)变异。随后,我们构建了R2B1-Rad50基因敲入小鼠,其中通过基因组编辑将STZ敏感的C3H.NSY-R2B1亚同源基因小鼠Rad50中的c.599T替换为c.599G。与C3H.NSY-R2B1小鼠相比,R2B1-Rad50基因敲入小鼠在单次高剂量和多次低剂量注射STZ后,高血糖、糖尿病发病率以及血浆胰岛素水平的降低均受到抑制。我们的结果表明Rad50是STZ诱导糖尿病的一个易感基因,它参与胰腺β细胞的脆性。使用对STZ敏感的近交系小鼠品系作为表型指标的正向遗传学方法将进一步阐明通过DNA损伤反应导致胰腺β细胞破坏的分子机制。