Ma Yifei, Fang Xiaoxiao, Yan Fengbo, Wang Leran, Yao Rui, Meng Miao, Qin Peixin, Yang Jinbo, Liu Zhiqi, Luo Zhaochu, Ning Shuai, Luo Feng
Tianjin Key Laboratory for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, Nankai University, 300350 Tianjin, China.
State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, 100871 Beijing, China.
Nano Lett. 2025 Jan 8;25(1):261-267. doi: 10.1021/acs.nanolett.4c04916. Epub 2024 Dec 26.
Architectures based on a magnetic domain wall (DW) can store and process information at a high speed in a nonvolatile manner with ultra-low power consumption. Recently, transition-metal rare earth metal alloy-based ferrimagnets have attracted a considerable amount of attention for the ultrafast current-driven DW motion. However, the high-speed DW motion is subject to film inhomogeneity and device edge defects, causing challenges in controlling the DW motion and hindering practical application. In this work, we demonstrate a strategy for precisely engineering the DW energy landscape by locally modifying the compensation state in a ferrimagnet via ion irradiation by using the focused ion beam technique. A diode-like DW motion behavior is observed at the lateral junction interface, i.e., the boundary between irradiated and non-irradiated CoGd, enabling selective control over DW pinning and depinning at specific locations. Our work provides insight into the development of next-generation DW-based ferrimagnetic racetrack memory and logic devices.
基于磁畴壁(DW)的架构能够以非易失性方式、超低功耗高速存储和处理信息。近来,基于过渡金属稀土金属合金的亚铁磁体因超快电流驱动的磁畴壁运动而备受关注。然而,高速磁畴壁运动受薄膜不均匀性和器件边缘缺陷影响,给磁畴壁运动控制带来挑战,阻碍了实际应用。在这项工作中,我们展示了一种策略,通过使用聚焦离子束技术对亚铁磁体中的补偿状态进行局部离子辐照,精确设计磁畴壁能量景观。在横向结界面(即辐照的CoGd和未辐照的CoGd之间的边界)观察到类似二极管的磁畴壁运动行为,能够在特定位置选择性地控制磁畴壁的钉扎和去钉扎。我们的工作为下一代基于磁畴壁的亚铁磁赛道存储器和逻辑器件的发展提供了思路。