Suppr超能文献

探究组胺H受体结合位点以探索配体结合动力学。

Probing the Histamine H Receptor Binding Site to Explore Ligand Binding Kinetics.

作者信息

Kuhne Sebastiaan, Bosma Reggie, Kooistra Albert J, Riemens Rick, Stroet Marc C M, Vischer Henry F, de Graaf Chris, Wijtmans Maikel, Leurs Rob, de Esch Iwan J P

机构信息

Amsterdam Institute of Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.

出版信息

J Med Chem. 2025 Jan 9;68(1):448-464. doi: 10.1021/acs.jmedchem.4c02043. Epub 2024 Dec 26.

Abstract

Analysis of structure-kinetic relationships (SKR) can contribute to an improved understanding of receptor-ligand interactions. Here, fragment (4-(2-benzylphenoxy)-1-methylpiperidine) was used in different fragment growing approaches to mimic the putative binding mode of the long residence time (RT) ligands olopatadine, acrivastine, and levocetirizine at the histamine H receptor (HR). SKR analyses reveal that introduction of a carboxylic acid moiety can increase RT at HR up to 11-fold. Ligand efficiency (LE) decreases upon the introduction of the negatively charged group, whereas kinetic efficiency (KE) increases up to 8.5-fold. The olopatadine/acrivastine mimics give up to 15-fold differences in the RT, while the levocetirizine mimics afford similar RTs with only a 3-fold difference. Therefore, the levocetirizine mimics are less sensitive to structural changes. This study illustrates that for HR, there are several ways to increase RT but the different strategies differ significantly in SKR.

摘要

结构 - 动力学关系(SKR)分析有助于增进对受体 - 配体相互作用的理解。在此,片段(4 - (2 - 苄基苯氧基) - 1 - 甲基哌啶)被用于不同的片段生长方法,以模拟长效(RT)配体奥洛他定、阿伐斯汀和左西替利嗪在组胺H受体(HR)上的假定结合模式。SKR分析表明,引入羧酸部分可使HR的RT增加高达11倍。引入带负电荷的基团后,配体效率(LE)降低,而动力学效率(KE)增加高达8.5倍。奥洛他定/阿伐斯汀模拟物的RT差异高达15倍,而左西替利嗪模拟物的RT相似,仅相差3倍。因此,左西替利嗪模拟物对结构变化不太敏感。这项研究表明,对于HR,有几种增加RT的方法,但不同策略在SKR方面有显著差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f32/11726634/c46d3eaee73f/jm4c02043_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验