Suppr超能文献

利用带有缺失值的有限多组学数据进行癌症分子亚型分类。

Cancer molecular subtyping using limited multi-omics data with missingness.

作者信息

Bu Yongqi, Liang Jiaxuan, Li Zhen, Wang Jianbo, Wang Jun, Yu Guoxian

机构信息

School of Software, Shandong University, Jinan, Shandong, China.

Joint SDU-NTU Centre for Artificial Intelligence Research, Shandong University, Jinan, Shandong, China.

出版信息

PLoS Comput Biol. 2024 Dec 26;20(12):e1012710. doi: 10.1371/journal.pcbi.1012710. eCollection 2024 Dec.

Abstract

Diagnosing cancer subtypes is a prerequisite for precise treatment. Existing multi-omics data fusion-based diagnostic solutions build on the requisite of sufficient samples with complete multi-omics data, which is challenging to obtain in clinical applications. To address the bottleneck of collecting sufficient samples with complete data in clinical applications, we proposed a flexible integrative model (CancerSD) to diagnose cancer subtype using limited samples with incomplete multi-omics data. CancerSD designs contrastive learning tasks and masking-and-reconstruction tasks to reliably impute missing omics, and fuses available omics data with the imputed ones to accurately diagnose cancer subtypes. To address the issue of limited clinical samples, it introduces a category-level contrastive loss to extend the meta-learning framework, effectively transferring knowledge from external datasets to pretrain the diagnostic model. Experiments on benchmark datasets show that CancerSD not only gives accurate diagnosis, but also maintains a high authenticity and good interpretability. In addition, CancerSD identifies important molecular characteristics associated with cancer subtypes, and it defines the Integrated CancerSD Score that can serve as an independent predictive factor for patient prognosis.

摘要

诊断癌症亚型是精准治疗的前提。现有的基于多组学数据融合的诊断解决方案依赖于具有完整多组学数据的足够样本,而这在临床应用中很难获得。为了解决临床应用中收集具有完整数据的足够样本这一瓶颈,我们提出了一种灵活的整合模型(CancerSD),用于使用具有不完整多组学数据的有限样本诊断癌症亚型。CancerSD设计了对比学习任务和掩码与重建任务来可靠地插补缺失的组学数据,并将可用的组学数据与插补后的数据融合以准确诊断癌症亚型。为了解决临床样本有限的问题,它引入了类别级对比损失来扩展元学习框架,有效地从外部数据集中转移知识以预训练诊断模型。在基准数据集上的实验表明,CancerSD不仅能给出准确的诊断,还能保持较高的可靠性和良好的可解释性。此外,CancerSD识别出与癌症亚型相关的重要分子特征,并定义了综合CancerSD评分,该评分可作为患者预后的独立预测因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83de/11709273/c85dff0d0e3d/pcbi.1012710.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验