Dong Shengwei, Shi Lingfeng, Geng Shenglu, Ning Yanbin, Kang Cong, Zhang Yan, Liu Ziwei, Zhu Jiaming, Qiang Zhuomin, Zhou Lin, Yin Geping, Li Dalong, Mu Tiansheng, Lou Shuaifeng
State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264200, People's Republic of China.
Nanomicro Lett. 2024 Dec 26;17(1):95. doi: 10.1007/s40820-024-01592-1.
Micrometer-sized silicon oxide (SiO) anodes encounter challenges in large-scale applications due to significant volume expansion during the alloy/de-alloy process. Herein, an innovative deep eutectic electrolyte derived from succinonitrile is introduced to enhance the cycling stability of SiO anodes. Density functional theory calculations validate a robust ion-dipole interaction between lithium ions (Li) and succinonitrile (SN). The cosolvent fluoroethylene carbonate (FEC) optimizes the Li solvation structure in the SN-based electrolyte with its weakly solvating ability. Molecular dynamics simulations investigate the regulating mechanism of ion-dipole and cation-anion interaction. The unique Li solvation structure, enriched with FEC and TFSI, facilitates the formation of an inorganic-organic composite solid electrolyte interphase on SiO anodes. Micro-CT further detects the inhibiting effect on the SiO volume expansion. As a result, the SiO|LiCoO full cells exhibit excellent electrochemical performance in deep eutectic-based electrolytes. This work presents an effective strategy for extending the cycle life of SiO anodes by designing a new SN-based deep eutectic electrolyte.
微米级氧化硅(SiO)阳极在大规模应用中面临挑战,因为在合金化/脱合金化过程中会发生显著的体积膨胀。在此,引入了一种由丁二腈衍生的创新型深共晶电解质,以提高SiO阳极的循环稳定性。密度泛函理论计算验证了锂离子(Li)与丁二腈(SN)之间存在强大的离子 - 偶极相互作用。共溶剂氟代碳酸乙烯酯(FEC)凭借其弱溶剂化能力优化了基于SN的电解质中的锂溶剂化结构。分子动力学模拟研究了离子 - 偶极和阳离子 - 阴离子相互作用的调节机制。富含FEC和双三氟甲烷磺酰亚胺(TFSI)的独特锂溶剂化结构有助于在SiO阳极上形成无机 - 有机复合固体电解质界面。显微CT进一步检测到对SiO体积膨胀的抑制作用。结果,SiO|LiCoO全电池在基于深共晶的电解质中表现出优异的电化学性能。这项工作通过设计一种新型的基于SN的深共晶电解质,为延长SiO阳极的循环寿命提供了一种有效策略。