Wang Jiahao, Liu Ping, Qiu Zhong, Yang Tianqi, Cao Feng, Xiang Jiayuan, Liang Xinqi, Shen Shenghui, Zhang Yongqi, Xia Yang, Wang Chen, Wan Wangjun, Zhang Jun, Huang Hui, Fang Ruyi, He Xinping, Gan Yongping, Tao Xinyong, Xia Xinhui, Zhang Wenkui
College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, China.
Small. 2025 Jul;21(27):e2500300. doi: 10.1002/smll.202500300. Epub 2025 May 19.
The construction of high-quality solid electrolyte interphase (SEI) on Li metal is one of the key strategies to improve the performance of Li metal anodes. Herein, we propose a novel gas-liquid hybrid source plasma technology to construct composite SEI consisting of organic lithium methyl carbonate (LMC) and inorganic lithium nitride (LiN) and lithium oxide (LiO) on the lithium metal. Supported by the theoretical calculation, the inorganic LiN and LiO phases possess low diffusion barrier potentials, favorable for fast Li transportation, and enhanced lithophilicity. Meanwhile, the organic LMC can effectively accommodate the volume expansion of lithium metal due to its high mechanical flexibility. Accordingly, the lithium metal anode modified by plasma-made SEI has a low overpotential of 11.4 mV at 1 mAh cm for 950 h with an average Coulombic efficiency of 99.7%, superior to the unmodified Li metal anode. When coupled with LiNiCoMnO (NCM811) cathode, the assembled full cell is proven with a higher capacity retention of 87.77% after 100 cycles at 0.5 C, indicating its significantly enhanced cycling stability due to the synergistic effect between LiN, LiO, and LMC in the composite SEI. This research demonstrates that plasma is a unique method for constructing high-quality SEI to achieve enhanced lithium anodes for energy storage.
在锂金属表面构建高质量的固体电解质界面(SEI)是提高锂金属负极性能的关键策略之一。在此,我们提出一种新型的气液混合源等离子体技术,用于在锂金属表面构建由有机碳酸甲基锂(LMC)、无机氮化锂(LiN)和氧化锂(LiO)组成的复合SEI。在理论计算的支持下,无机LiN和LiO相具有较低的扩散势垒,有利于锂的快速传输,并增强了亲锂性。同时,有机LMC由于其高机械柔韧性,可以有效地适应锂金属的体积膨胀。因此,经等离子体制备的SEI修饰的锂金属负极在1 mAh cm²下950小时内具有11.4 mV的低过电位,平均库仑效率为99.7%,优于未修饰的锂金属负极。当与LiNiCoMnO(NCM811)正极耦合时,组装的全电池在0.5 C下循环100次后具有87.77%的更高容量保持率,表明由于复合SEI中LiN、LiO和LMC之间的协同效应,其循环稳定性显著增强。这项研究表明,等离子体是构建高质量SEI以实现用于储能的增强型锂负极的独特方法。