Suppr超能文献

SCREEN:一种基于图的对比学习工具,用于推断催化残基和评估酶突变

SCREEN: A Graph-based Contrastive Learning Tool to Infer Catalytic Residues and Assess Enzyme Mutations.

作者信息

Pan Tong, Bi Yue, Wang Xiaoyu, Zhang Ying, Webb Geoffrey I, Gasser Robin B, Kurgan Lukasz, Song Jiangning

机构信息

Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.

Monash Biomedicine Discovery Institute-Wenzhou Medical University Alliance in Clinical and Experimental Biomedicine, Monash University, Clayton, VIC 3800, Australia.

出版信息

Genomics Proteomics Bioinformatics. 2025 Jan 15;22(6). doi: 10.1093/gpbjnl/qzae094.

Abstract

The accurate identification of catalytic residues contributes to our understanding of enzyme functions in biological processes and pathways. The increasing number of protein sequences necessitates computational tools for the automated prediction of catalytic residues in enzymes. Here, we introduce SCREEN, a graph neural network for the high-throughput prediction of catalytic residues via the integration of enzyme functional and structural information. SCREEN constructs residue representations based on spatial arrangements and incorporates enzyme function priors into such representations through contrastive learning. We demonstrate that SCREEN (1) consistently outperforms currently-available predictors; (2) provides accurate results when applied to inferred enzyme structures; and (3) generalizes well to enzymes dissimilar from those in the training set. We also show that the putative catalytic residues predicted by SCREEN mimic key structural and biophysical characteristics of native catalytic residues. Moreover, using experimental datasets, we show that SCREEN's predictions can be used to distinguish residues with a high mutation tolerance from those likely to cause functional loss when mutated, indicating that this tool might be used to infer disease-associated mutations. SCREEN is publicly available at https://github.com/BioColLab/SCREEN and https://ngdc.cncb.ac.cn/biocode/tool/7580.

摘要

催化残基的准确识别有助于我们理解酶在生物过程和途径中的功能。蛋白质序列数量的不断增加使得需要计算工具来自动预测酶中的催化残基。在此,我们介绍了SCREEN,这是一种通过整合酶的功能和结构信息来高通量预测催化残基的图神经网络。SCREEN基于空间排列构建残基表示,并通过对比学习将酶功能先验纳入此类表示中。我们证明,SCREEN(1)始终优于当前可用的预测器;(2)应用于推断的酶结构时能提供准确结果;(3)对与训练集中的酶不同的酶具有良好的泛化能力。我们还表明,SCREEN预测的假定催化残基模仿了天然催化残基的关键结构和生物物理特征。此外,使用实验数据集,我们表明SCREEN的预测可用于区分具有高突变耐受性的残基与突变时可能导致功能丧失的残基,这表明该工具可用于推断与疾病相关的突变。SCREEN可在https://github.com/BioColLab/SCREEN和https://ngdc.cncb.ac.cn/biocode/tool/7580上公开获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e344/11961199/7fc3099f3850/qzae094f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验