Qiu Kangqiang, Xu Xiuqiong, Zhang Kai, Diao Jiajie
Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
Methods Mol Biol. 2025;2840:175-183. doi: 10.1007/978-1-0716-4047-0_13.
Organelles play essential roles in cellular homeostasis and various cellular functions in eukaryotic cells. The current experimental strategy to modulate organelle functions is limited due to the dynamic nature and subcellular distribution of organelles in live cells. Optogenetics utilizes photoactivatable proteins to enable dynamic control of molecular activities through visible light. This modality has been rapidly expanded for the dynamic regulation of organelle functions. This chapter describes a method by optical modulation of the mitochondria-lysosome contacts (MLCs). Detailed procedures of transfection, optogenetic MLCs, mitochondrial morphology, and functional analysis are described. Optogenetic control of organelles in live cells offers an innovative paradigm for cell engineering and synthetic biology.
细胞器在真核细胞的细胞内稳态和各种细胞功能中发挥着重要作用。由于细胞器在活细胞中的动态性质和亚细胞分布,目前调节细胞器功能的实验策略受到限制。光遗传学利用光激活蛋白,通过可见光实现对分子活性的动态控制。这种方法已迅速扩展到对细胞器功能的动态调节。本章介绍一种通过光学调制线粒体-溶酶体接触(MLC)的方法。描述了转染、光遗传学MLC、线粒体形态和功能分析的详细步骤。对活细胞中细胞器的光遗传学控制为细胞工程和合成生物学提供了一种创新范例。