Suppr超能文献

应用系统级光谱成像和分析来揭示细胞器相互作用组。

Applying systems-level spectral imaging and analysis to reveal the organelle interactome.

作者信息

Valm Alex M, Cohen Sarah, Legant Wesley R, Melunis Justin, Hershberg Uri, Wait Eric, Cohen Andrew R, Davidson Michael W, Betzig Eric, Lippincott-Schwartz Jennifer

机构信息

Eunice Kennedy Shriver National Institute for Child Health and Human Development, NIH, Bethesda, Maryland 20892, USA.

Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA.

出版信息

Nature. 2017 Jun 1;546(7656):162-167. doi: 10.1038/nature22369. Epub 2017 May 24.

Abstract

The organization of the eukaryotic cell into discrete membrane-bound organelles allows for the separation of incompatible biochemical processes, but the activities of these organelles must be coordinated. For example, lipid metabolism is distributed between the endoplasmic reticulum for lipid synthesis, lipid droplets for storage and transport, mitochondria and peroxisomes for β-oxidation, and lysosomes for lipid hydrolysis and recycling. It is increasingly recognized that organelle contacts have a vital role in diverse cellular functions. However, the spatial and temporal organization of organelles within the cell remains poorly characterized, as fluorescence imaging approaches are limited in the number of different labels that can be distinguished in a single image. Here we present a systems-level analysis of the organelle interactome using a multispectral image acquisition method that overcomes the challenge of spectral overlap in the fluorescent protein palette. We used confocal and lattice light sheet instrumentation and an imaging informatics pipeline of five steps to achieve mapping of organelle numbers, volumes, speeds, positions and dynamic inter-organelle contacts in live cells from a monkey fibroblast cell line. We describe the frequency and locality of two-, three-, four- and five-way interactions among six different membrane-bound organelles (endoplasmic reticulum, Golgi, lysosome, peroxisome, mitochondria and lipid droplet) and show how these relationships change over time. We demonstrate that each organelle has a characteristic distribution and dispersion pattern in three-dimensional space and that there is a reproducible pattern of contacts among the six organelles, that is affected by microtubule and cell nutrient status. These live-cell confocal and lattice light sheet spectral imaging approaches are applicable to any cell system expressing multiple fluorescent probes, whether in normal conditions or when cells are exposed to disturbances such as drugs, pathogens or stress. This methodology thus offers a powerful descriptive tool and can be used to develop hypotheses about cellular organization and dynamics.

摘要

真核细胞被组织成离散的膜结合细胞器,这使得不相容的生化过程得以分离,但这些细胞器的活动必须相互协调。例如,脂质代谢分布在内质网(用于脂质合成)、脂滴(用于储存和运输)、线粒体和过氧化物酶体(用于β-氧化)以及溶酶体(用于脂质水解和再循环)之间。人们越来越认识到细胞器接触在多种细胞功能中起着至关重要的作用。然而,细胞内细胞器的空间和时间组织仍然 poorly characterized,因为荧光成像方法在单个图像中可区分的不同标记数量有限。在这里,我们使用多光谱图像采集方法对细胞器相互作用组进行了系统水平的分析,该方法克服了荧光蛋白调色板中光谱重叠的挑战。我们使用共聚焦和晶格光片仪器以及一个五步成像信息学流程,实现了对来自猴成纤维细胞系的活细胞中细胞器数量、体积、速度、位置和动态细胞器间接触的映射。我们描述了六种不同膜结合细胞器(内质网、高尔基体、溶酶体、过氧化物酶体、线粒体和脂滴)之间二、三、四和五路相互作用的频率和位置,并展示了这些关系如何随时间变化。我们证明每个细胞器在三维空间中都有特征性的分布和分散模式,并且六种细胞器之间存在可重复的接触模式,这种模式受微管和细胞营养状态的影响。这些活细胞共聚焦和晶格光片光谱成像方法适用于任何表达多种荧光探针的细胞系统,无论是在正常条件下还是当细胞受到药物、病原体或应激等干扰时。因此,这种方法提供了一个强大的描述工具,可用于提出关于细胞组织和动态的假设。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/032c/5536967/31c6b7fc8bcb/nihms868385f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验