Cerny Oliveira Luca, Chauhan Joohi, Chaudhari Ajinkya, Cheung Sen-Ching S, Patel Viharkumar, Villablanca Amparo C, Jin Lee-Way, DeCarli Charles, Chuah Chen-Nee, Dugger Brittany N
Department of Electrical and Computer Engineering, University of California Davis, Davis, CA, United States.
Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, United States.
J Neuropathol Exp Neurol. 2025 Feb 1;84(2):114-125. doi: 10.1093/jnen/nlae120.
Microinfarcts and microhemorrhages are characteristic lesions of cerebrovascular disease. Although multiple studies have been published, there is no one universal standard criteria for the neuropathological assessment of cerebrovascular disease. In this study, we propose a novel application of machine learning in the automated screening of microinfarcts and microhemorrhages. Utilizing whole slide images (WSIs) from postmortem human brain samples, we adapted a patch-based pipeline with convolutional neural networks. Our cohort consisted of 22 cases from the University of California Davis Alzheimer's Disease Research Center brain bank with hematoxylin and eosin-stained formalin-fixed, paraffin-embedded sections across 3 anatomical areas: frontal, parietal, and occipital lobes (40 WSIs with microinfarcts and/or microhemorrhages, 26 without). We propose a multiple field-of-view prediction step to mitigate false positives. We report screening performance (ie, the ability to distinguish microinfarct/microhemorrhage-positive from microinfarct/microhemorrhage-negative WSIs), and detection performance (ie, the ability to localize the affected regions within a WSI). Our proposed approach improved detection precision and screening accuracy by reducing false positives thereby achieving 100% screening accuracy. Although this sample size is small, this pipeline provides a proof-of-concept for high efficacy in screening for characteristic brain changes of cerebrovascular disease to aid in screening of microinfarcts/microhemorrhages at the WSI level.
微梗死灶和微出血是脑血管疾病的特征性病变。尽管已经发表了多项研究,但对于脑血管疾病的神经病理学评估尚无统一的标准。在本研究中,我们提出了机器学习在微梗死灶和微出血自动筛查中的新应用。利用死后人类脑样本的全切片图像(WSIs),我们采用了一种基于补丁的卷积神经网络流程。我们的队列包括来自加利福尼亚大学戴维斯分校阿尔茨海默病研究中心脑库的22例病例,有苏木精和伊红染色的福尔马林固定石蜡包埋切片,涉及3个解剖区域:额叶、顶叶和枕叶(40张有微梗死灶和/或微出血的WSIs,26张没有)。我们提出了多视野预测步骤以减少假阳性。我们报告了筛查性能(即区分微梗死灶/微出血阳性与微梗死灶/微出血阴性WSIs的能力)和检测性能(即在WSI内定位受影响区域的能力)。我们提出的方法通过减少假阳性提高了检测精度和筛查准确性,从而实现了100%的筛查准确率。尽管样本量较小,但该流程为高效筛查脑血管疾病的特征性脑变化以辅助在WSI水平筛查微梗死灶/微出血提供了概念验证。