Levy Shai, Be'er Orr, Shaek Saar, Gorlach Alexey, Scharf Einav, Ossia Yonatan, Liran Rotem, Cohen Kobi, Strassberg Rotem, Kaminer Ido, Banin Uri, Bekenstein Yehonadav
Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.
The Solid-State Institute, Technion - Israel Institute of Technology, Haifa 32000, Israel.
ACS Nano. 2025 Jan 14;19(1):963-971. doi: 10.1021/acsnano.4c12509. Epub 2024 Dec 26.
Collective optical properties can emerge from an ordered ensemble of emitters due to interactions between the individual units. Superlattices of halide perovskite nanocrystals exhibit collective light emission, influenced by dipole-dipole interactions between simultaneously excited nanocrystals. This coupling changes both the emission energy and rate compared to the emission of uncoupled nanocrystals. We demonstrate how quantum confinement governs the nature of the coupling between the nanocrystals in the ensemble. The extent of confinement is modified by controlling the nanocrystal size or by compositional control over the Bohr radius. In superlattices made of weakly confined nanocrystals, the collective emission is red-shifted with a faster emission rate, showing the key characteristics of superfluorescence. In contrast, the collective emission of stronger quantum-confined nanocrystals is blue-shifted with a slower emission rate. Both types of collective emission exhibit correlative multiphoton emission bursts, showing distinct photon bunching emission statistics. The quantum confinement changes the preferred alignment of transition dipoles within the nanocrystal and switches the relative dipole orientation between neighbors, resulting in opposite collective optical behaviors. Our results extend these collective effects to relatively high temperatures and provide a better understanding of exciton interactions and collective emission phenomena at the solid state.
由于单个单元之间的相互作用,集体光学性质可以从有序的发射体集合中出现。卤化物钙钛矿纳米晶体的超晶格表现出集体发光,这受到同时激发的纳米晶体之间偶极 - 偶极相互作用的影响。与未耦合的纳米晶体的发射相比,这种耦合改变了发射能量和速率。我们展示了量子限域如何控制集合中纳米晶体之间耦合的性质。通过控制纳米晶体尺寸或对玻尔半径进行成分控制,可以改变限域程度。在由弱限域纳米晶体制成的超晶格中,集体发射发生红移且发射速率更快,呈现出超荧光的关键特征。相比之下,强量子限域纳米晶体的集体发射发生蓝移且发射速率较慢。这两种类型的集体发射都表现出相关的多光子发射脉冲,呈现出不同的光子聚束发射统计特性。量子限域改变了纳米晶体内跃迁偶极的优先取向,并切换了相邻纳米晶体之间的相对偶极取向,从而导致相反的集体光学行为。我们的结果将这些集体效应扩展到了相对较高的温度,并为固态下的激子相互作用和集体发射现象提供了更好的理解。