Suppr超能文献

结合N气体通量法和NO同位素数据测定土壤微生物NO来源

Combining the N Gas Flux Method and NO Isotopocule Data for the Determination of Soil Microbial NO Sources.

作者信息

Micucci Gianni, Lewicka-Szczebak Dominika, Sgouridis Fotis, Well Reinhard, Buchen-Tschiskale Caroline, McNamara Niall P, Krause Stefan, Lynch Iseult, Roos Felicity, Ullah Sami

机构信息

School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK.

Institute of Geological Sciences, University of Wrocław, Wrocław, 50-204, Poland.

出版信息

Rapid Commun Mass Spectrom. 2025 Mar 30;39(6):e9971. doi: 10.1002/rcm.9971.

Abstract

RATIONALE

The analysis of natural abundance isotopes in biogenic NO molecules provides valuable insights into the nature of their precursors and their role in biogeochemical cycles. However, current methodologies (for example, the isotopocule map approach) face limitations, as they only enable the estimation of combined contributions from multiple processes at once rather than discriminating individual sources. This study aimed to overcome this challenge by developing a novel methodology for the partitioning of NO sources in soil, combining natural abundance isotopes and the use of a N tracer (N Gas Flux method) in parallel incubations.

METHODS

Laboratory incubations of an agricultural soil were conducted to optimize denitrification conditions through increased moisture and nitrate amendments, using nitrate that was either N-labeled or unlabeled. A new linear system combined with Monte Carlo simulation was developed to determine NO source contributions, and the subsequent results were compared with FRAME, a Bayesian statistical model for stable isotope analysis.

RESULTS

Our new methodology identified bacterial denitrification as the dominant process (87.6%), followed by fungal denitrification (9.4%), nitrification (1.5%), and nitrifier denitrification (1.6%). Comparisons with FRAME showed good agreement, although FRAME estimated slightly lower bacterial denitrification (80%) and higher nitrifier-denitrification (9%) contributions.

CONCLUSIONS

This approach provides an improved framework for accurately partitioning NO sources, enhancing understanding of nitrogen cycling in agroecosystems, and supporting broader environmental applications.

摘要

原理

对生物源一氧化氮(NO)分子中的天然丰度同位素进行分析,可为其前体的性质及其在生物地球化学循环中的作用提供有价值的见解。然而,目前的方法(例如,同位素分子图谱方法)存在局限性,因为它们只能一次性估计多个过程的综合贡献,而无法区分单个来源。本研究旨在通过开发一种新方法来克服这一挑战,该方法将天然丰度同位素与在平行培养中使用氮示踪剂(氮气通量法)相结合,用于划分土壤中的NO来源。

方法

对一种农业土壤进行实验室培养,通过增加湿度和添加硝酸盐来优化反硝化条件,使用标记或未标记氮的硝酸盐。开发了一种结合蒙特卡罗模拟的新线性系统来确定NO来源的贡献,并将后续结果与FRAME(一种用于稳定同位素分析的贝叶斯统计模型)进行比较。

结果

我们的新方法确定细菌反硝化是主要过程(87.6%),其次是真菌反硝化(9.4%)、硝化作用(1.5%)和硝化细菌反硝化(1.6%)。与FRAME的比较显示出良好的一致性,尽管FRAME估计细菌反硝化的贡献略低(80%),硝化细菌反硝化的贡献略高(9%)。

结论

该方法为准确划分NO来源提供了一个改进的框架,增强了对农业生态系统中氮循环的理解,并支持更广泛的环境应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0950/11671725/c8bfa0afd01f/RCM-39-e9971-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验