Suppr超能文献

用于求解具有神经网络离散化的偏微分方程变分问题的高斯牛顿法。

Gauss Newton Method for Solving Variational Problems of PDEs with Neural Network Discretizaitons.

作者信息

Hao Wenrui, Hong Qingguo, Jin Xianlin

机构信息

Department of Mathematics, Pennsylvania State University, State College, USA.

Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, USA.

出版信息

J Sci Comput. 2024 Jul;100(1). doi: 10.1007/s10915-024-02535-z. Epub 2024 Jun 3.

Abstract

The numerical solution of differential equations using machine learning-based approaches has gained significant popularity. Neural network-based discretization has emerged as a powerful tool for solving differential equations by parameterizing a set of functions. Various approaches, such as the deep Ritz method and physics-informed neural networks, have been developed for numerical solutions. Training algorithms, including gradient descent and greedy algorithms, have been proposed to solve the resulting optimization problems. In this paper, we focus on the variational formulation of the problem and propose a Gauss-Newton method for computing the numerical solution. We provide a comprehensive analysis of the superlinear convergence properties of this method, along with a discussion on semi-regular zeros of the vanishing gradient. Numerical examples are presented to demonstrate the efficiency of the proposed Gauss-Newton method.

摘要

使用基于机器学习的方法来求解微分方程的数值解已经变得非常流行。基于神经网络的离散化方法已经成为通过对一组函数进行参数化来求解微分方程的强大工具。已经开发了各种方法,如深度里兹法和物理信息神经网络,用于数值解。为了解决由此产生的优化问题,已经提出了包括梯度下降和贪婪算法在内的训练算法。在本文中,我们专注于该问题的变分形式,并提出一种高斯 - 牛顿法来计算数值解。我们对该方法的超线性收敛特性进行了全面分析,并讨论了消失梯度的半正则零点。给出了数值例子以证明所提出的高斯 - 牛顿法的有效性。

相似文献

1
Gauss Newton Method for Solving Variational Problems of PDEs with Neural Network Discretizaitons.
J Sci Comput. 2024 Jul;100(1). doi: 10.1007/s10915-024-02535-z. Epub 2024 Jun 3.
2
Solving inverse problems in physics by optimizing a discrete loss: Fast and accurate learning without neural networks.
PNAS Nexus. 2024 Jan 11;3(1):pgae005. doi: 10.1093/pnasnexus/pgae005. eCollection 2024 Jan.
4
A simple remedy for failure modes in physics informed neural networks.
Neural Netw. 2025 Mar;183:106963. doi: 10.1016/j.neunet.2024.106963. Epub 2024 Dec 10.
5
Tackling the curse of dimensionality with physics-informed neural networks.
Neural Netw. 2024 Aug;176:106369. doi: 10.1016/j.neunet.2024.106369. Epub 2024 May 7.
9
Physics-Informed Neural Networks for Solving Coupled Stokes-Darcy Equation.
Entropy (Basel). 2022 Aug 11;24(8):1106. doi: 10.3390/e24081106.
10
Spectral integrated neural networks (SINNs) for solving forward and inverse dynamic problems.
Neural Netw. 2024 Dec;180:106756. doi: 10.1016/j.neunet.2024.106756. Epub 2024 Sep 22.

引用本文的文献

1
Automatic Differentiation is Essential in Training Neural Networks for Solving Differential Equations.
J Sci Comput. 2025 Aug;104(2). doi: 10.1007/s10915-025-02965-3. Epub 2025 Jun 24.

本文引用的文献

1
Approximation rates for neural networks with general activation functions.
Neural Netw. 2020 Aug;128:313-321. doi: 10.1016/j.neunet.2020.05.019. Epub 2020 May 18.
2
Solving high-dimensional partial differential equations using deep learning.
Proc Natl Acad Sci U S A. 2018 Aug 21;115(34):8505-8510. doi: 10.1073/pnas.1718942115. Epub 2018 Aug 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验