Suppr超能文献

自动微分在训练用于求解微分方程的神经网络中至关重要。

Automatic Differentiation is Essential in Training Neural Networks for Solving Differential Equations.

作者信息

Chen Chuqi, Yang Yahong, Xiang Yang, Hao Wenrui

机构信息

Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.

Department of Mathematics, The Pennsylvania State University, Pennsylvania, USA.

出版信息

J Sci Comput. 2025 Aug;104(2). doi: 10.1007/s10915-025-02965-3. Epub 2025 Jun 24.

Abstract

Neural network-based approaches have recently shown significant promise in solving partial differential equations (PDEs) in science and engineering, especially in scenarios featuring complex domains or incorporation of empirical data. One advantage of the neural network methods for PDEs lies in its automatic differentiation (AD), which necessitates only the sample points themselves, unlike traditional finite difference (FD) approximations that require nearby local points to compute derivatives. In this paper, we quantitatively demonstrate the advantage of AD in training neural networks. The concept of truncated entropy is introduced to characterize the training property. Specifically, through comprehensive experimental and theoretical analyses conducted on random feature models and two-layer neural networks, we discover that the defined truncated entropy serves as a reliable metric for quantifying the residual loss of random feature models and the training speed of neural networks for both AD and FD methods. Our experimental and theoretical analyses demonstrate that, from a training perspective, AD outperforms FD in solving PDEs.

摘要

基于神经网络的方法最近在求解科学与工程中的偏微分方程(PDE)方面展现出了巨大潜力,尤其是在具有复杂区域或纳入经验数据的场景中。用于偏微分方程的神经网络方法的一个优势在于其自动微分(AD),它仅需要样本点本身,这与传统的有限差分(FD)近似不同,后者需要附近的局部点来计算导数。在本文中,我们定量地证明了自动微分在训练神经网络中的优势。引入了截断熵的概念来表征训练特性。具体而言,通过对随机特征模型和两层神经网络进行全面的实验和理论分析,我们发现定义的截断熵是量化随机特征模型的残差损失以及自动微分和有限差分方法的神经网络训练速度的可靠指标。我们的实验和理论分析表明,从训练角度来看,在求解偏微分方程时自动微分优于有限差分。

相似文献

1
Automatic Differentiation is Essential in Training Neural Networks for Solving Differential Equations.
J Sci Comput. 2025 Aug;104(2). doi: 10.1007/s10915-025-02965-3. Epub 2025 Jun 24.
3
Deep Learning Approaches to Surrogates for Solving the Diffusion Equation for Mechanistic Real-World Simulations.
Front Physiol. 2021 Jun 24;12:667828. doi: 10.3389/fphys.2021.667828. eCollection 2021.
5
Predicting cognitive decline: Deep-learning reveals subtle brain changes in pre-MCI stage.
J Prev Alzheimers Dis. 2025 May;12(5):100079. doi: 10.1016/j.tjpad.2025.100079. Epub 2025 Feb 6.
6
7
Deep learning for automatic ICD coding: Review, opportunities and challenges.
Artif Intell Med. 2025 Oct;168:103187. doi: 10.1016/j.artmed.2025.103187. Epub 2025 Jul 10.
8
The use of Open Dialogue in Trauma Informed Care services for mental health consumers and their family networks: A scoping review.
J Psychiatr Ment Health Nurs. 2024 Aug;31(4):681-698. doi: 10.1111/jpm.13023. Epub 2024 Jan 17.
10
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.

本文引用的文献

1
Homotopy Relaxation Training Algorithms for Infinite-Width Two-Layer ReLU Neural Networks.
J Sci Comput. 2025 Feb;102(2). doi: 10.1007/s10915-024-02761-5. Epub 2025 Jan 3.
3
Gauss Newton Method for Solving Variational Problems of PDEs with Neural Network Discretizaitons.
J Sci Comput. 2024 Jul;100(1). doi: 10.1007/s10915-024-02535-z. Epub 2024 Jun 3.
4
Solving high-dimensional partial differential equations using deep learning.
Proc Natl Acad Sci U S A. 2018 Aug 21;115(34):8505-8510. doi: 10.1073/pnas.1718942115. Epub 2018 Aug 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验