Suppr超能文献

受自然启发的方法:一种用于全局优化的新型大鼠优化算法。

Nature-Inspired Approach: A Novel Rat Optimization Algorithm for Global Optimization.

作者信息

Yan Pianpian, Zhang Jinzhong, Zhang Tan

机构信息

School of Electrical and Photoelectronic Engineering, West Anhui University, Lu'an 237012, China.

出版信息

Biomimetics (Basel). 2024 Dec 1;9(12):732. doi: 10.3390/biomimetics9120732.

Abstract

This work presents a rat optimization algorithm (ROA), which simulates the social behavior of rats and is a new nature-inspired optimization technique. The ROA consists of three operators that simulate rats searching for prey, chasing and fighting prey, and jumping and hunting prey to deal with optimization issues. The Levy flight strategy is introduced into the ROA to keep the algorithm from running into issues with slow convergence and local optimums. The ROA is tested with four real-world engineering optimization issues and twenty-two benchmark functions. Experiments show that the ROA is particularly effective at solving real-world optimization problems compared to other well-known optimization techniques.

摘要

这项工作提出了一种大鼠优化算法(ROA),该算法模拟大鼠的社会行为,是一种新的受自然启发的优化技术。ROA由三个算子组成,分别模拟大鼠寻找猎物、追逐和攻击猎物以及跳跃和捕猎猎物的过程,以处理优化问题。将莱维飞行策略引入ROA,以防止算法出现收敛速度慢和局部最优的问题。使用四个实际工程优化问题和二十二个基准函数对ROA进行了测试。实验表明,与其他著名的优化技术相比,ROA在解决实际优化问题方面特别有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/11673259/fec912e5d749/biomimetics-09-00732-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验