Suppr超能文献

受杂种优势理论启发的用于全局优化和工程问题的协同元启发式算法。

Cooperative metaheuristic algorithm for global optimization and engineering problems inspired by heterosis theory.

作者信息

Cai Ting, Zhang Songsong, Ye Zhiwei, Zhou Wen, Wang Mingwei, He Qiyi, Chen Ziyuan, Bai Wanfang

机构信息

School of Computer Science, Hubei University of Technology, Wuhan, 430000, China.

Xining Big Data Service Administration, Xining, 810000, China.

出版信息

Sci Rep. 2024 Nov 21;14(1):28876. doi: 10.1038/s41598-024-78761-0.

Abstract

Swarm Intelligence-based metaheuristic algorithms are widely applied to global optimization and engineering design problems. However, these algorithms often suffer from two main drawbacks: susceptibility to the local optima in large search space and slow convergence rate. To address these issues, this paper develops a novel cooperative metaheuristic algorithm (CMA), which is inspired by heterosis theory. Firstly, simulating hybrid rice optimization algorithm (HRO) constucted based on heterosis theory, the population is sorted by fitness and divided into three subpopulations, corresponding to the maintainer, restorer, and sterile line in HRO, respectively, which engage in cooperative evolution. Subsequently, in each subpopulation, a novel three-phase local optima avoidance technique-Search-Escape-Synchronize (SES) is introduced. In the search phase, the well-established Particle Swarm Optimization algorithm (PSO) is used for global exploration. During the escape phase, escape energy is dynamically calculated for each agent. If it exceeds a threshold, a large-scale Lévy flight jump is performed; otherwise, PSO continues to conduct the local search. In the synchronize phase, the best solutions from subpopulations are shared through an elite-based strategy, while the classical Ant Colony Optimization algorithm is employed to perform fine-tuned local optimization near the shared optimal solutions. This process accelerates convergence, maintains population diversity, and ensures a balanced transition between global exploration and local exploitation. To validate the effectiveness of CMA, this study evaluates the algorithm using 26 well-known benchmark functions and 5 real-world engineering problems. Experimental results demonstrate that CMA outperforms the 10 state-of-the-art algorithms evaluated in the study, which is a very promising for engineering optimization problem solving.

摘要

基于群体智能的元启发式算法被广泛应用于全局优化和工程设计问题。然而,这些算法通常存在两个主要缺点:在大搜索空间中易陷入局部最优以及收敛速度慢。为了解决这些问题,本文提出了一种受杂种优势理论启发的新型协同元启发式算法(CMA)。首先,基于杂种优势理论构建模拟杂交水稻优化算法(HRO),根据适应度对种群进行排序并划分为三个子种群,分别对应HRO中的保持系、恢复系和不育系,它们进行协同进化。随后,在每个子种群中,引入一种新颖的三相局部最优避免技术——搜索 - 逃逸 - 同步(SES)。在搜索阶段,使用成熟的粒子群优化算法(PSO)进行全局探索。在逃逸阶段,为每个智能体动态计算逃逸能量。如果超过阈值,则执行大规模的莱维飞行跳跃;否则,PSO继续进行局部搜索。在同步阶段,通过基于精英的策略共享子种群中的最佳解,同时采用经典蚁群优化算法在共享最优解附近进行微调局部优化。这个过程加速了收敛,保持了种群多样性,并确保了全局探索和局部开发之间的平衡过渡。为了验证CMA的有效性,本研究使用26个著名的基准函数和5个实际工程问题对该算法进行评估。实验结果表明,CMA优于本研究中评估的10种先进算法,这对于解决工程优化问题非常有前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db47/11582625/e2e2ba0e8c86/41598_2024_78761_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验