Zhang Yi, Liu Xinyu, Sun Wei, You Tianshu, Qi Xin
College of Electrical and Computer Science, Jilin Jianzhu University, Changchun 130119, China.
Rural Revitalization Research Institute, Changchun Sci-Tech University, Changchun 130022, China.
Biomimetics (Basel). 2025 May 19;10(5):331. doi: 10.3390/biomimetics10050331.
This paper proposes an adaptive multi-threshold image segmentation method named IBKA-OTSU to address the limitations of existing deep learning-based image segmentation methods, particularly their heavy reliance on large-scale annotated datasets and high computational complexity. The proposed algorithm significantly enhances the capability of complex remote sensing scenarios by systematic improvements to core algorithm components, including population initialization strategy, attack behavior patterns, migration mechanisms, and opposition-based learning strategy. The improved intelligent optimization algorithm is innovatively integrated with the OTSU threshold method to establish a multi-threshold segmentation model specifically designed for remote sensing imagery. Experimental validation using representative samples from the ISPRS Potsdam benchmark dataset demonstrates that our IBKA-optimized OTSU multi-threshold segmentation method outperforms traditional IBKA-optimized pulse coupled neural network (PCNN) approaches in remote sensing image analysis. Quantitative evaluations reveal substantial improvements in the dice coefficient across six randomly selected remote sensing images, achieving performance enhancements of 7.76%, 11.99%, 30.75%, 22.91%, 44.37%, and 18.55%, respectively. This research provides an effective technical solution for intelligently interpreting remote sensing imagery in resource-constrained environments, demonstrating significant theoretical value and practical application potential in engineering implementations.
本文提出了一种名为IBKA - OTSU的自适应多阈值图像分割方法,以解决现有基于深度学习的图像分割方法的局限性,特别是它们对大规模标注数据集的严重依赖和高计算复杂性。通过对核心算法组件进行系统改进,包括种群初始化策略、攻击行为模式、迁移机制和基于对立的学习策略,该算法显著增强了复杂遥感场景下的能力。改进后的智能优化算法与OTSU阈值方法进行创新性集成,建立了专门针对遥感影像的多阈值分割模型。使用来自ISPRS波茨坦基准数据集的代表性样本进行实验验证表明,我们的IBKA优化的OTSU多阈值分割方法在遥感图像分析方面优于传统的IBKA优化的脉冲耦合神经网络(PCNN)方法。定量评估显示,在六幅随机选择的遥感图像上,骰子系数有显著提高,分别实现了7.76%、11.99%、30.75%、22.91%、44.37%和18.55%的性能提升。本研究为在资源受限环境中智能解读遥感影像提供了一种有效的技术解决方案,在工程实施中具有显著的理论价值和实际应用潜力。