Suppr超能文献

一种基于粘附控制电液驱动器的蠕虫状软体机器人。

A Worm-like Soft Robot Based on Adhesion-Controlled Electrohydraulic Actuators.

作者信息

Wu Yangzhuo, Sun Zhe, Xiang Yu, Zhao Jieliang

机构信息

School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.

Beijing Institute of Astronautical Systems Engineering, Beijing 100076, China.

出版信息

Biomimetics (Basel). 2024 Dec 20;9(12):776. doi: 10.3390/biomimetics9120776.

Abstract

Worms are organisms characterized by simple structures, low energy consumption, and stable movement. Inspired by these characteristics, worm-like soft robots demonstrate exceptional adaptability to unstructured environments, attracting considerable interest in the field of biomimetic engineering. The primary challenge currently involves improving the motion performance of worm-like robots from the perspectives of actuation and anchoring. In this study, a single segment worm-like soft robot driven by electrohydraulic actuators is proposed. The robot consists of a soft actuation module and two symmetrical anchoring modules. The actuation modules enable multi-degree-of-freedom motion of the robot using symmetric dual-electrode electrohydraulic actuators, while the anchoring modules provide active friction control through bistable electrohydraulic actuators. A hierarchical microstructure design is used for the biomimetic adhesive surface, enabling rapid, reversible, and stable attachment to and detachment from different surfaces, thereby improving the robot's surface anchoring performance. Experimental results show that the designed robot can perform peristaltic and bending motions similar to a worm. It achieves rapid bidirectional propulsion on both dry and wet surfaces, with a maximum speed of 10.36 mm/s (over 6 velocity/length ratio (min)).

摘要

蠕虫是一种具有结构简单、能量消耗低和运动稳定等特点的生物体。受这些特性的启发,类蠕虫软体机器人在非结构化环境中表现出卓越的适应性,在仿生工程领域引起了广泛关注。目前的主要挑战在于从驱动和锚定的角度提高类蠕虫机器人的运动性能。在本研究中,提出了一种由电动液压驱动器驱动的单节段类蠕虫软体机器人。该机器人由一个软驱动模块和两个对称的锚定模块组成。驱动模块使用对称双电极电动液压驱动器实现机器人的多自由度运动,而锚定模块通过双稳态电动液压驱动器提供主动摩擦控制。对仿生粘附表面采用了分级微观结构设计,使其能够在不同表面上快速、可逆且稳定地附着和脱离,从而提高了机器人的表面锚定性能。实验结果表明,所设计的机器人能够执行类似于蠕虫的蠕动和弯曲运动。它在干燥和潮湿表面上均能实现快速双向推进,最大速度为10.36毫米/秒(超过6个速度/长度比(分钟))。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ced4/11727201/9666d73115c7/biomimetics-09-00776-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验