Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309;
Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309.
Proc Natl Acad Sci U S A. 2020 Jul 14;117(28):16207-16213. doi: 10.1073/pnas.2006596117. Epub 2020 Jun 29.
Nature has inspired the design of robots in which soft actuators enable tasks such as handling of fragile objects and adapting to unstructured environments. Those tasks are difficult for traditional robots, which predominantly consist of hard components. Electrohydraulic soft actuators are liquid-filled shells that deform upon the application of electric fields; they excel among soft actuators with muscle-like force outputs and actuation strains, and with actuation frequencies above 100 Hz. However, the fundamental physics that governs the dynamics of electrohydraulic soft actuators is unexplored. Here, we study the dynamics of electrohydraulic soft actuators using the Peano-HASEL (hydraulically amplified self-healing electrostatic) actuator as a model system. Using experiments and a scaling analysis, we discover two dynamic regimes: a regime in which viscous dissipation reduces the actuation speed and a regime governed by inertial effects in which high-speed actuation is possible. For each regime, we derive a timescale that describes the influence of geometry, materials system, and applied external loads on the actuation speed. We also derive a model to study the dynamic behavior of Peano-HASEL actuators in both regimes. Although this analysis focuses on the Peano-HASEL actuator, the presented results may readily be generalized to other electrohydraulic actuators. When designed to operate in the inertial regime, electrohydraulic actuators will enable bio-inspired robots with unprecedented speeds of motion.
大自然启发了机器人的设计,其中软执行器使处理易碎物体和适应非结构化环境等任务成为可能。这些任务对于主要由硬组件组成的传统机器人来说是困难的。电液软执行器是充满液体的外壳,在电场作用下会变形;它们在具有类似肌肉的力输出和致动应变的软执行器中表现出色,并且在 100Hz 以上的频率下进行致动。然而,控制电液软执行器动力学的基本物理原理尚未得到探索。在这里,我们使用 Peano-HASEL(液压放大自修复静电)执行器作为模型系统来研究电液软执行器的动力学。通过实验和缩放分析,我们发现了两种动态模式:一种模式是粘性耗散降低致动速度,另一种模式是惯性效应控制,在这种模式下可以实现高速致动。对于每个模式,我们推导出一个时间尺度,该时间尺度描述了几何形状、材料系统和施加的外部负载对致动速度的影响。我们还推导出一个模型来研究 Peano-HASEL 执行器在这两种模式下的动态行为。尽管这种分析侧重于 Peano-HASEL 执行器,但所提出的结果可以很容易地推广到其他电液执行器。当设计为在惯性模式下运行时,电液执行器将使具有前所未有的运动速度的仿生机器人成为可能。