Suppr超能文献

用于高效钒氧化还原液流电池的铋纳米粒子均匀修饰的碳毡

Carbon Felts Uniformly Modified with Bismuth Nanoparticles for Efficient Vanadium Redox Flow Batteries.

作者信息

Chen Huishan, Li Sen, Zhao Yongxin, Li Xinyue, Zhao Hui, Cheng Longzhen, Li Renting, Dai Pengcheng

机构信息

State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China.

出版信息

Nanomaterials (Basel). 2024 Dec 23;14(24):2055. doi: 10.3390/nano14242055.

Abstract

The integration of intermittent renewable energy sources into the energy supply has driven the need for large-scale energy storage technologies. Vanadium redox flow batteries (VRFBs) are considered promising due to their long lifespan, high safety, and flexible design. However, the graphite felt (GF) electrode, a critical component of VRFBs, faces challenges due to the scarcity of active sites, leading to low electrochemical activity. Herein, we developed a bismuth nanoparticle uniformly modified graphite felt (Bi-GF) electrode using a bismuth oxide-mediated hydrothermal pyrolysis method. The Bi-GF electrode demonstrated significantly improved electrochemical performance, with higher peak current densities and lower charge transfer resistance than those of the pristine GF. VRFBs utilizing Bi-GF electrodes achieved a charge-discharge capacity exceeding 700 mAh at 200 mA/cm, with a voltage efficiency above 84%, an energy efficiency of 83.05%, and an electrolyte utilization rate exceeding 70%. This work provides new insights into the design and development of efficient electrodes, which is of great significance for improving the efficiency and reducing the cost of VRFBs.

摘要

将间歇性可再生能源整合到能源供应中,推动了对大规模储能技术的需求。钒氧化还原液流电池(VRFB)因其寿命长、安全性高和设计灵活而被认为具有前景。然而,作为VRFB关键组件的石墨毡(GF)电极,由于活性位点稀缺,面临挑战,导致电化学活性较低。在此,我们采用氧化铋介导的水热热解方法开发了一种铋纳米颗粒均匀修饰的石墨毡(Bi-GF)电极。Bi-GF电极表现出显著改善的电化学性能,与原始GF相比,具有更高的峰值电流密度和更低的电荷转移电阻。使用Bi-GF电极的VRFB在200 mA/cm下实现了超过700 mAh的充放电容量,电压效率高于84%,能量效率为83.05%,电解液利用率超过70%。这项工作为高效电极的设计和开发提供了新的见解,对提高VRFB的效率和降低成本具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5761/11676265/f293882f4b92/nanomaterials-14-02055-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验