Suppr超能文献

通过调节单原子铁位点的电子分布促进氮电还原为氨的动力学

Boosting Electroreduction Kinetics of Nitrogen to Ammonia via Tuning Electron Distribution of Single-Atomic Iron Sites.

作者信息

Li Yan, Li Junwei, Huang Junheng, Chen Junxiang, Kong Yan, Yang Bin, Li Zhongjian, Lei Lecheng, Chai Guoliang, Wen Zhenhai, Dai Liming, Hou Yang

机构信息

Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.

CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.

出版信息

Angew Chem Int Ed Engl. 2021 Apr 12;60(16):9078-9085. doi: 10.1002/anie.202100526. Epub 2021 Mar 5.

Abstract

Electrocatalytic nitrogen reduction reaction (NRR) plays a vital role for next-generation electrochemical energy conversion technologies. However, the NRR kinetics is still limited by the sluggish hydrogenation process on noble-metal-free electrocatalyst. Herein, we report the rational design and synthesis of a hybrid catalyst with atomic iron sites anchored on a N,O-doped porous carbon (Fe -NO-C) matrix of an inverse opal structure, leading to a remarkably high NH yield rate of 31.9 μg  h  mg and Faradaic efficiency of 11.8 % at -0.4 V for NRR electrocatalysis, outperformed almost all previously reported atomically dispersed metal-nitrogen-carbon catalysts. Theoretical calculations revealed that the observed high NRR catalytic activity for the Fe -NO-C catalyst stemmed mainly from the optimized charge-transfer between the adjacent O and Fe atoms homogenously distributed on the porous carbon support, which could not only significantly facilitate the transportation of N and ions but also effectively decrease the binding energy between the isolated Fe atom and *N intermediate and the thermodynamic Gibbs free energy of the rate-determining step (*N → *NNH).

摘要

电催化氮还原反应(NRR)在下一代电化学能量转换技术中起着至关重要的作用。然而,NRR动力学仍然受到无贵金属电催化剂上缓慢氢化过程的限制。在此,我们报道了一种具有原子铁位点的混合催化剂的合理设计与合成,该原子铁位点锚定在反蛋白石结构的N、O掺杂多孔碳(Fe-NO-C)基质上,在-0.4V下进行NRR电催化时,NH产率高达31.9μg h mg,法拉第效率为11.8%,几乎优于所有先前报道的原子分散金属-氮-碳催化剂。理论计算表明,Fe-NO-C催化剂所观察到的高NRR催化活性主要源于均匀分布在多孔碳载体上的相邻O和Fe原子之间优化的电荷转移,这不仅可以显著促进N和离子的传输,还能有效降低孤立Fe原子与*N中间体之间的结合能以及速率决定步骤(*N→*NNH)的热力学吉布斯自由能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验