一维模型分析中使用氢渗透膜反应器的氨分解与一氧化碳甲烷化联合反应系统
Combined Reaction System for NH Decomposition and CO Methanation Using Hydrogen Permeable Membrane Reactor in 1D Model Analysis.
作者信息
Permatasari Putri, Goto Haruka, Miyamoto Manabu, Oumi Yasunori, Budhi Yogi Wibisono, Uemiya Shigeyuki
机构信息
Department of Material Science and Processing, Gifu University, Gifu 501-1113, Japan.
Department of Chemistry and Biomolecular Science, Gifu University, Gifu 501-1113, Japan.
出版信息
Membranes (Basel). 2024 Dec 17;14(12):273. doi: 10.3390/membranes14120273.
In a previous study, we developed an integrated reaction system combining NH decomposition and CO methanation within a membrane reactor, significantly enhancing reactor performance through efficient H separation. Ru/Ba/γ-AlO and Ru/ZrO were employed as catalysts for each reaction. To ensure the accuracy and reliability of our results, they were validated through 1D models using FlexPDE Professional Version 7.21/W64 software. Key parameters such as reactor arrangement, catalyst bed positioning, overall heat transfer coefficient, rate constants, and H permeance were investigated to optimize system efficiency. The study revealed that positioning the NH decomposition on the shell side and CO methanation on the tube side resulted in a better performance. Additionally, shifting the methanation catalyst bed downward by approximately one-eighth (10 mm from 80 mm) achieves the highest CO conversion. A sensitivity analysis identified the rate constant of the NH decomposition catalyst and the H permeance of the membrane as the most influential factors in enhancing CO conversion. This highlights the priority of improving membrane H permeance and catalytic activity for NH decomposition to maximize system efficiency.
在之前的一项研究中,我们开发了一种集成反应系统,该系统在膜反应器中将氨分解和一氧化碳甲烷化相结合,通过高效的氢分离显著提高了反应器性能。钌/钡/γ-氧化铝和钌/氧化锆分别用作每个反应的催化剂。为确保结果的准确性和可靠性,我们使用FlexPDE Professional Version 7.21/W64软件通过一维模型对其进行了验证。研究了诸如反应器布置、催化剂床位置、总传热系数、速率常数和氢渗透率等关键参数,以优化系统效率。研究表明,将氨分解置于壳侧,一氧化碳甲烷化置于管侧可获得更好的性能。此外,将甲烷化催化剂床向下移动约八分之一(从80毫米移至70毫米)可实现最高的一氧化碳转化率。敏感性分析确定氨分解催化剂的速率常数和膜的氢渗透率是提高一氧化碳转化率的最具影响力的因素。这突出了提高膜氢渗透率和氨分解催化活性以最大化系统效率的优先性。