Ray Dhiman, Rizzi Valerio
Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States.
School of Pharmaceutical Sciences and Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Rue Michel Servet 1, 1206 Genève, Switzerland.
J Chem Theory Comput. 2025 Jan 14;21(1):58-69. doi: 10.1021/acs.jctc.4c01231. Epub 2024 Dec 27.
We introduce an enhanced sampling algorithm to obtain converged free energy landscapes of molecular rare events, even when the collective variable (CV) used for biasing is not optimal. Our approach samples a time-dependent target distribution by combining the on-the-fly probability enhanced sampling and its exploratory variant, OPES Explore. This promotes more transitions between the relevant metastable states and accelerates the convergence speed of the free energy estimate. We demonstrate the successful application of this combined algorithm on the two-dimensional Wolfe-Quapp potential, millisecond time-scale ligand-receptor binding in the trypsin-benzamidine complex, and folding-unfolding transitions in chignolin mini-protein. Our proposed algorithm can compute accurate free energies at an affordable computational cost and is robust in terms of the choice of CVs, making it particularly promising for the simulation of complex biomolecular systems.
我们引入了一种增强采样算法,以获得分子罕见事件的收敛自由能景观,即使在用于偏差的集体变量(CV)不是最优的情况下也是如此。我们的方法通过结合即时概率增强采样及其探索性变体OPES Explore来采样时间相关的目标分布。这促进了相关亚稳态之间更多的转变,并加速了自由能估计的收敛速度。我们展示了这种组合算法在二维Wolfe-Quapp势、胰蛋白酶-苯甲脒复合物中毫秒时间尺度的配体-受体结合以及奇果菌素小蛋白的折叠-展开转变上的成功应用。我们提出的算法可以以可承受的计算成本计算准确的自由能,并且在CV的选择方面具有鲁棒性,这使得它在模拟复杂生物分子系统方面特别有前景。