Suppr超能文献

OPES-eABF混合采样方法中快速探索与精确重加权相结合

Combining Fast Exploration with Accurate Reweighting in the OPES-eABF Hybrid Sampling Method.

作者信息

Hulm Andreas, Schiller Robert P, Ochsenfeld Christian

机构信息

Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany.

Max Planck Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart, Germany.

出版信息

J Chem Theory Comput. 2025 Jul 8;21(13):6434-6445. doi: 10.1021/acs.jctc.5c00395. Epub 2025 Jun 18.

Abstract

On-the-fly probability enhanced sampling (OPES) has recently been introduced [Invernizzi, M.; Parrinello, M. 2022, 18, 3988-3996], with important improvements over the highly popular metadynamics methods. In our work, we introduce a new combination of OPES with the extended-system adaptive biasing force (eABF) method. We show that the resulting OPES-eABF hybrid is highly robust to the choice of input parameters, while ensuring faster exploration of configuration space than the original OPES. The only critical parameter of OPES-eABF is the coupling width to the extended-system, for which we introduce an automatic algorithm based on a short initial unbiased simulation, such that OPES-eABF requires minimal user intervention. Additionally, we show that due to the decoupling of the physical system from the time-dependent potential, unbiased probabilities of visited configurations are recovered highly accurately.

摘要

动态概率增强采样(OPES)最近被提出[因韦尔尼齐,M.;帕里内洛,M. 2022,18,3988 - 3996],与广受欢迎的元动力学方法相比有重要改进。在我们的工作中,我们引入了OPES与扩展系统自适应偏置力(eABF)方法的新组合。我们表明,由此产生的OPES - eABF混合方法对输入参数的选择具有高度鲁棒性,同时确保比原始OPES更快地探索构型空间。OPES - eABF的唯一关键参数是与扩展系统的耦合宽度,为此我们基于短时间的初始无偏模拟引入了一种自动算法,使得OPES - eABF所需的用户干预最少。此外,我们表明,由于物理系统与时间相关势的解耦,所访问构型的无偏概率能够非常精确地恢复。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc29/12243082/edfd0b9203e2/ct5c00395_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验