Güller Mustafa Taha, Kumbasar Nida, Miloğlu Özkan
Department of Oral, Dental and Maxillofacial Radiology, Faculty of Dentistry, Giresun University, Giresun, 28200, Turkey.
TUBITAK, Informatics and Information Security Research Center (BILGEM), Kocaeli, 41470, Turkey.
Oral Radiol. 2025 Apr;41(2):260-275. doi: 10.1007/s11282-024-00799-7. Epub 2024 Dec 27.
The aim of this study is to determine the contact relationship and position of impacted mandibular third molar teeth (IMM) with the mandibular canal (MC) in panoramic radiography (PR) images using deep learning (DL) models trained with the help of cone beam computed tomography (CBCT) and DL to compare the performances of the architectures.
In this study, a total of 546 IMMs from 290 patients with CBCT and PR images were included. The performances of SqueezeNet, GoogLeNet, and Inception-v3 architectures in solving four problems on two different regions of interest (RoI) were evaluated.
The SqueezeNet architecture performed the best on the vertical RoI, showing 93.2% accuracy in the identification of the 2nd problem (contact relationship buccal or lingual). Inception-v3 showed the highest performance with 84.8% accuracy in horizontal RoI for the 1st problem (contact relationship-no contact relationship), GoogLeNet showed 77.4% accuracy in horizontal RoI for the 4th problem (contact relationship buccal, lingual, other category, or no contact relationship), and GoogLeNet showed 70.0% accuracy in horizontal RoI for the 3rd problem (contact relationship buccal, lingual, or other category).
This study found that the Inception-v3 model showed the highest accuracy values in determining the contact relationship, and SqueezeNet architecture showed the highest accuracy values in determining the position of IMM relative to MC in the presence of a contact relationship.
本研究的目的是使用在锥束计算机断层扫描(CBCT)帮助下训练的深度学习(DL)模型,在全景放射摄影(PR)图像中确定下颌阻生第三磨牙(IMM)与下颌管(MC)的接触关系和位置,并使用DL比较不同架构的性能。
本研究纳入了290例患者的546颗有CBCT和PR图像的IMM。评估了SqueezeNet、GoogLeNet和Inception-v3架构在解决两个不同感兴趣区域(RoI)的四个问题上的性能。
SqueezeNet架构在垂直RoI上表现最佳,在识别第二个问题(颊侧或舌侧接触关系)时准确率为93.2%。Inception-v3在水平RoI上对第一个问题(接触关系-无接触关系)的表现最高,准确率为84.8%,GoogLeNet在水平RoI上对第四个问题(颊侧、舌侧、其他类别或无接触关系的接触关系)的准确率为77.4%,GoogLeNet在水平RoI上对第三个问题(颊侧、舌侧或其他类别的接触关系)的准确率为70.0%。
本研究发现,Inception-v3模型在确定接触关系时显示出最高的准确率值,而SqueezeNet架构在存在接触关系时确定IMM相对于MC的位置时显示出最高的准确率值。