文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

评估人工智能模型在全景X线片上对颌面部不透光和透光性病变的有效性。

Evaluation of the effectiveness of artificial intelligence models in radiopaque and radiolucent lesions of the maxillofacial region on panoramic radiographs.

作者信息

Tosun Zeynep Turanli, Kumbasar Nida, Sumbullu Muhammet Akif, Miloglu Ozkan

机构信息

Department of Oral, Dental and Maxillofacial Radiology, Faculty of Dentistry, Ataturk University, Yakutiye, 25240, Erzurum, Turkey.

TÜBİTAK, Informatics and Information Security Research Center (BİLGEM), 41470, İzmit, Kocaeli, Turkey.

出版信息

Oral Radiol. 2025 Jul 1. doi: 10.1007/s11282-025-00838-x.


DOI:10.1007/s11282-025-00838-x
PMID:40593453
Abstract

OBJECTIVES: The aim of this study is to evaluate the success of algorithms used in deep learning (DL), a technique of artificial intelligence (AI), in the classification, detection, and segmentation of radiopaque, and radiolucent lesions in the maxillofacial region on panoramic radiographs (PR). METHODS: This study included PRs of individuals aged 12 to 80 years who presented with radiopaque or radiolucent findings in the maxillofacial region based on radiological examination. Lesions were classified on the dataset obtained from the PRs using AlexNet, VGG16, and GoogleNet architectures. The location detection and segmentation of lesions were performed using the YOLOv8 architecture. The classification, object detection, and segmentation performances of the DL architectures were evaluated. RESULTS: In the classification tasks using full PR, GoogleNet achieved the highest accuracy of 95.6%, with 97.1% precision and 95.5% F1 score in two-class lesion classification (lesion vs. no lesion). In distinguishing radiopaque and radiolucent lesions, VGG16 performed best, with 68.4% accuracy and 81.0% F1 score. For three-class and four-class classifications, GoogleNet again outperformed others with 61.6 and 75.7% accuracy, respectively. In cropped lesion-based classification, both GoogleNet and AlexNet achieved 96.5% accuracy. The YOLOv8m model demonstrated the best performance in object detection and segmentation, with 71.5% and 72.1% mean Average Precision (mAP), respectively. CONCLUSION: These findings suggest that DL architectures, particularly GoogleNet for classification and YOLOv8m for object detection and segmentation, demonstrate strong potential in the automated analysis of maxillofacial lesions on panoramic radiographs. Their high performance in distinguishing lesion types and accurately localizing pathological areas indicates that such models could assist clinicians in early diagnosis and treatment planning, potentially reducing reliance on more complex imaging methods.

摘要

目的:本研究旨在评估深度学习(DL)这一人工智能(AI)技术中所使用的算法,在全景X线片(PR)上对颌面部不透光及透光性病变进行分类、检测和分割的成功率。 方法:本研究纳入了年龄在12至80岁之间、经放射学检查显示颌面部有不透光或透光性表现的个体的PR。使用AlexNet、VGG16和GoogleNet架构,在从PR获得的数据集中对病变进行分类。使用YOLOv8架构进行病变的位置检测和分割。评估了DL架构的分类、目标检测和分割性能。 结果:在使用完整PR的分类任务中,GoogleNet在两类病变分类(病变与无病变)中达到了最高准确率95.6%,精确率为97.1%,F1分数为95.5%。在区分不透光和透光性病变方面,VGG16表现最佳,准确率为68.4%,F1分数为81.0%。对于三类和四类分类,GoogleNet再次优于其他模型,准确率分别为61.6%和75.7%。在基于病变裁剪的分类中,GoogleNet和AlexNet的准确率均达到了96.5%。YOLOv8m模型在目标检测和分割方面表现最佳,平均精度均值(mAP)分别为71.5%和72.1%。 结论:这些发现表明,DL架构,特别是用于分类的GoogleNet和用于目标检测及分割的YOLOv8m,在全景X线片上对颌面部病变的自动分析中显示出强大的潜力。它们在区分病变类型和准确定位病理区域方面的高性能表明,此类模型可以协助临床医生进行早期诊断和治疗规划,有可能减少对更复杂成像方法的依赖。

相似文献

[1]
Evaluation of the effectiveness of artificial intelligence models in radiopaque and radiolucent lesions of the maxillofacial region on panoramic radiographs.

Oral Radiol. 2025-7-1

[2]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[3]
Automated detection and classification of osteolytic lesions in panoramic radiographs using CNNs and vision transformers.

BMC Oral Health. 2025-6-21

[4]
AI-Driven localization of all impacted teeth and prediction of winter angulation for third molars on panoramic radiographs: Clinical user interface design.

Comput Biol Med. 2024-8

[5]
Multiclass skin lesion classification and localziation from dermoscopic images using a novel network-level fused deep architecture and explainable artificial intelligence.

BMC Med Inform Decis Mak. 2025-7-1

[6]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[7]
Computer vision analysis of luteal color Doppler ultrasonography for early and automated pregnancy diagnosis in Bos taurus beef cows.

J Anim Sci. 2025-1-4

[8]
Comparative analysis of convolutional neural networks and transformer architectures for breast cancer histopathological image classification.

Front Med (Lausanne). 2025-6-17

[9]
AI-based Hepatic Steatosis Detection and Integrated Hepatic Assessment from Cardiac CT Attenuation Scans Enhances All-cause Mortality Risk Stratification: A Multi-center Study.

medRxiv. 2025-6-11

[10]
Artificial intelligence for detecting keratoconus.

Cochrane Database Syst Rev. 2023-11-15

本文引用的文献

[1]
Evaluation of the effectiveness of panoramic radiography in impacted mandibular third molars on deep learning models developed with findings obtained with cone beam computed tomography.

Oral Radiol. 2025-4

[2]
Tooth numbering and classification on bitewing radiographs: an artificial intelligence pilot study.

Oral Surg Oral Med Oral Pathol Oral Radiol. 2024-6

[3]
Graphical user interface-based convolutional neural network models for detecting nasopalatine duct cysts using panoramic radiography.

Sci Rep. 2024-4-2

[4]
Detection and Segmentation of Radiolucent Lesions in the Lower Jaw on Panoramic Radiographs Using Deep Neural Networks.

Medicina (Kaunas). 2023-12-9

[5]
An artificial intelligence study: automatic description of anatomic landmarks on panoramic radiographs in the pediatric population.

BMC Oral Health. 2023-10-17

[6]
The Use of Artificial Intelligence in Dentistry Practices.

Eurasian J Med. 2022-12

[7]
A Deep Learning Model for Idiopathic Osteosclerosis Detection on Panoramic Radiographs.

Med Princ Pract. 2022

[8]
Deep learning object detection of maxillary cyst-like lesions on panoramic radiographs: preliminary study.

Oral Radiol. 2021-7

[9]
Deep Learning for Automated Detection of Cyst and Tumors of the Jaw in Panoramic Radiographs.

J Clin Med. 2020-6-12

[10]
Application of a fully deep convolutional neural network to the automation of tooth segmentation on panoramic radiographs.

Oral Surg Oral Med Oral Pathol Oral Radiol. 2019-11-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索