Dos Santos Nikolas R, Schober João Vitor, Laconsay Croix J, Palazzo Alexandria M, Kuhn Leah, Chu Angel, Hanks Benjamin, Hanson Kenneth, Wu Judy, Alabugin Igor V
Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States.
Department of Chemistry, University of Houston, Houston, Texas 77204, United States.
J Am Chem Soc. 2025 Jan 8;147(1):1074-1091. doi: 10.1021/jacs.4c14486. Epub 2024 Dec 27.
We present a six-step cascade that converts 1,3-distyrylbenzenes (-stilbenes) into nonsymmetric pyrenes in 40-60% yields. This sequence merges photochemical steps, ,-alkene isomerization, a 6π photochemical electrocyclization (Mallory photocyclization); the new bay region cyclization, with two radical iodine-mediated aromatization steps; and an optional aryl migration. This work illustrates how the inherent challenges of engineering excited state reactivity can be addressed by logical design. An unusual aspect of this cascade is that the same photochemical process (the Mallory reaction) is first promoted and then blocked in different stages within a photochemical cascade. The use of blocking groups is the key feature that makes simple -stilbenes suitable substrates for directed double cyclization. While the first stilbene subunit undergoes a classic Mallory photocyclization to form a phenanthrene intermediate, the next ring-forming step is diverted from the conventional Mallory path into a photocyclization of the remaining alkene at the phenanthrene's bay region. Although earlier literature suggested that this reaction is unfavorable, we achieved this diversion via incorporation of blocking groups to prevent the Mallory photocyclization. The two photocyclizations are assisted by the relief of the excited state antiaromaticity. Reaction selectivity is controlled by substituent effects and the interplay between photochemical and radical reactivity. Furthermore, the introduction of donor substituents at the pendant styrene group can further extend this photochemical cascade through a radical 1,2-aryl migration. Rich photophysical and supramolecular properties of the newly substituted pyrenes illustrate the role of systematic variations in the structure of this classic chromophore for excited state engineering.
我们展示了一个六步串联反应,该反应能以40%-60%的产率将1,3-二苯乙烯基苯(-二苯乙烯)转化为不对称芘。这个反应序列融合了光化学步骤、α,β-烯烃异构化、一个6π光化学电环化反应(马洛里光环化反应);新的湾区环化反应,以及两个自由基碘介导的芳构化步骤;还有一个可选的芳基迁移反应。这项工作说明了如何通过合理设计来应对激发态反应性工程中固有的挑战。这个串联反应的一个不同寻常之处在于,同一个光化学过程(马洛里反应)在光化学串联反应的不同阶段先是被促进,然后又被阻断。使用阻断基团是使简单的-二苯乙烯成为定向双环化合适底物的关键特征。当第一个二苯乙烯亚基经历经典的马洛里光环化反应形成菲中间体时,下一个成环步骤从传统的马洛里路径转向菲的湾区剩余烯烃的光环化反应。尽管早期文献表明这个反应是不利的,但我们通过引入阻断基团来防止马洛里光环化反应实现了这种转变。这两个光环化反应是由激发态反芳香性的缓解所辅助的。反应选择性由取代基效应以及光化学和自由基反应性之间的相互作用控制。此外,在侧链苯乙烯基团上引入供电子取代基可以通过自由基1,2-芳基迁移进一步扩展这个光化学串联反应。新取代芘丰富的光物理和超分子性质说明了在这个经典发色团结构中进行系统变化对于激发态工程的作用。