Zych Dawid, Kubis Martyna
Faculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland.
Molecules. 2024 Mar 3;29(5):1131. doi: 10.3390/molecules29051131.
Pyrene, a renowned aromatic hydrocarbon, continues to captivate researchers due to its versatile properties and potential applications across various scientific domains. Among its derivatives, bromopyrenes stand out for their significance in synthetic chemistry, materials science, and environmental studies. The strategic functionalisation of pyrene at non-K region and nodal positions is crucial for expanding its utility, allowing for diverse functionalisation strategies. Bromo-substituted precursors serve as vital intermediates in synthetic routes; however, the substitution pattern of bromoderivatives significantly impacts their subsequent functionalisation and properties, posing challenges in synthesis and purification. Understanding the distinct electronic structure of pyrene is pivotal, dictating the preferential electrophilic aromatic substitution reactions at specific positions. Despite the wealth of literature, contradictions and complexities persist in synthesising suitably substituted bromopyrenes due to the unpredictable nature of substitution reactions. Building upon historical precedents, this study provides a comprehensive overview of bromine introduction in pyrene derivatives, offering optimised synthesis conditions based on laboratory research. Specifically, the synthesis of mono-, di-, tri-, and tetrabromopyrene isomers at non-K positions (1-, 3-, 6-, 8-) and nodal positions (2-, 7-) is systematically explored. By elucidating efficient synthetic methodologies and reaction conditions, this research contributes to advancing the synthesis and functionalisation strategies of pyrene derivatives, unlocking new possibilities for their utilisation in various fields.
芘是一种著名的芳烃,因其具有多种特性以及在各个科学领域的潜在应用,一直吸引着研究人员。在其衍生物中,溴代芘因其在合成化学、材料科学和环境研究中的重要性而脱颖而出。芘在非K区域和节点位置的策略性官能团化对于扩展其用途至关重要,这使得各种官能团化策略成为可能。溴代取代前体在合成路线中起着至关重要的中间体作用;然而,溴衍生物的取代模式会显著影响其后续的官能团化和性质,给合成和纯化带来挑战。理解芘独特的电子结构至关重要,它决定了在特定位置优先发生的亲电芳香取代反应。尽管有大量文献,但由于取代反应的不可预测性,在合成适当取代的溴代芘时仍存在矛盾和复杂性。基于历史先例,本研究全面概述了芘衍生物中溴的引入,根据实验室研究提供了优化的合成条件。具体而言,系统地探索了在非K位置(1-、3-、6-、8-)和节点位置(2-、7-)合成单溴、二溴、三溴和四溴芘异构体。通过阐明高效的合成方法和反应条件,本研究有助于推进芘衍生物的合成和官能团化策略,为其在各个领域的应用开辟新的可能性。