Cheng Ting, Yu Dongdong, Li Geng, Chen Xiankun, Zhou Li, Wen Zehuai
Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.
First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
PLoS One. 2024 Dec 27;19(12):e0316045. doi: 10.1371/journal.pone.0316045. eCollection 2024.
Further evidence is required regarding the influence of metal mixture exposure on mortality. Therefore, we employed diverse statistical models to evaluate the associations between eight urinary metals and the risks of all-cause and cardiovascular mortality.
We measured the levels of 8 metals in the urine of adults who participated in the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2018. Based on follow-up data, we determined whether they died and the reasons for their deaths. We estimated the association between urine metal exposure and all-cause mortality using Cox regression, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) models. Additionally, we used a competing risk model to estimate the relationship between metal exposure and cardiovascular mortality.
Among the 14,305 individuals included in our final analysis, there were 2,066 deaths, with 1,429 being cardiovascular-related. Cox regression analysis showed that cobalt (Co) (HR: 1.21; 95% CI: 1.13, 1.30) and antimony (Sb) (HR: 1.26; 95% CI: 1.12, 1.40) were positively associated with all-cause mortality (all P for trend <0.001). In the competing risk model, Co (HR: 1.29; 95% CI: 1.12, 1.48), lead (Pb) (HR: 1.18; 95% CI: 1.03, 1.37), and Sb (HR: 1.44; 95% CI: 1.18, 1.75) were significantly associated with an increased risk of cardiovascular mortality (all P for trend <0.001). Sb, Pb, cadmium (Cd), and molybdenum (Mo) had the highest weight rankings in the final WQS model. All metals showed a complex non-linear relationship with all-cause mortality, with high posterior inclusion probabilities (PIPs) in the final BKMR models.
Combining all models, it is possible that Sb may have a more stable impact on all-cause and cardiovascular mortality. Meaningful metal effects in individual statistical models still require careful attention.
关于金属混合物暴露对死亡率的影响,还需要更多证据。因此,我们采用了多种统计模型来评估八种尿金属与全因死亡率和心血管死亡率风险之间的关联。
我们测量了1999年至2018年参加美国国家健康与营养检查调查(NHANES)的成年人尿液中8种金属的含量。根据随访数据,我们确定了他们是否死亡以及死亡原因。我们使用Cox回归、加权分位数和(WQS)回归以及贝叶斯核机器回归(BKMR)模型估计尿金属暴露与全因死亡率之间的关联。此外,我们使用竞争风险模型来估计金属暴露与心血管死亡率之间的关系。
在我们最终分析纳入的14305名个体中,有2066人死亡,其中1429人死于心血管相关疾病。Cox回归分析表明,钴(Co)(风险比:1.21;95%置信区间:1.13,1.30)和锑(Sb)(风险比:1.26;95%置信区间:1.12,1.40)与全因死亡率呈正相关(所有趋势P值<0.001)。在竞争风险模型中,Co(风险比:1.29;95%置信区间:1.12,1.48)、铅(Pb)(风险比:1.18;95%置信区间:1.03,1.37)和Sb(风险比:1.44;95%置信区间:1.18,1.75)与心血管死亡率风险增加显著相关(所有趋势P值<0.001)。在最终的WQS模型中,Sb、Pb、镉(Cd)和钼(Mo)的权重排名最高。所有金属与全因死亡率均呈现复杂的非线性关系,在最终的BKMR模型中具有较高的后验包含概率(PIPs)。
综合所有模型,Sb可能对全因死亡率和心血管死亡率有更稳定的影响。个别统计模型中有意义的金属效应仍需仔细关注。