From the Center for Anti-racism, Social Justice & Public Health, New York University School of Global Public Health, New York, NY.
Department of Biostatistics, New York University School of Global Public Health, New York, NY.
Epidemiology. 2024 Nov 1;35(6):735-747. doi: 10.1097/EDE.0000000000001777. Epub 2024 Aug 1.
Little attention has been devoted to framing multiple continuous social variables as a "mixture" for social epidemiologic analysis. We propose using the Bayesian kernel machine regression analytic framework that yields univariate, bivariate, and overall exposure mixture effects.
Using data from the 2023 Survey of Racism and Public Health, we conducted a Bayesian kernel machine regression analysis to study several individual, social, and structural factors as an exposure mixture and their relationships with psychological distress among individuals with at least one police arrest. Factors included racial and economic polarization, neighborhood deprivation, perceived discrimination, police perception, subjective social status, and substance use. We complemented this analysis with a series of unadjusted and adjusted models for each exposure mixture variable.
We found that more self-reported discrimination experiences in the past year (posterior inclusion probability = 1.00) and greater substance use (posterior inclusion probability = 1.00) correlated with higher psychological distress. These associations were consistent with the findings from the unadjusted and adjusted linear regression analyses: past year perceived discrimination (unadjusted b = 2.58, 95% confidence interval [CI]: 1.86, 3.30; adjusted b = 2.20, 95% CI: 1.45, 2.94) and substance use (unadjusted b = 2.92, 95% CI: 2.21, 3.62; adjusted b = 2.59, 95% CI: 1.87, 3.31).
With the rise of big data and the expansion of variables in long-standing cohort and census studies, novel applications of methods from adjacent disciplines are a step forward in identifying exposure mixture associations in social epidemiology and addressing the health needs of socially vulnerable populations.
很少有人关注将多个连续的社会变量构造成“混合体”用于社会流行病学分析。我们提出使用贝叶斯核机器回归分析框架,该框架可产生单变量、双变量和总体暴露混合效应。
我们利用 2023 年种族主义和公共卫生调查的数据,进行了贝叶斯核机器回归分析,以研究个体、社会和结构因素作为暴露混合物及其与至少有一次被捕经历的个体心理困扰之间的关系。这些因素包括种族和经济两极化、邻里贫困、感知歧视、警察认知、主观社会地位和物质使用。我们为每个暴露混合物变量补充了一系列未经调整和调整后的模型。
我们发现,过去一年中自我报告的歧视经历越多(后验纳入概率=1.00)和物质使用量越大(后验纳入概率=1.00),与更高的心理困扰相关。这些关联与未经调整和调整后的线性回归分析结果一致:过去一年感知歧视(未经调整的 b=2.58,95%置信区间[CI]:1.86,3.30;调整后的 b=2.20,95%CI:1.45,2.94)和物质使用(未经调整的 b=2.92,95%CI:2.21,3.62;调整后的 b=2.59,95%CI:1.87,3.31)。
随着大数据的兴起和长期队列研究和人口普查中变量的扩展,来自相邻学科的方法的新应用是识别社会流行病学中暴露混合物关联并满足社会弱势群体健康需求的一步。