Suppr超能文献

Crops3D:一个用于农业应用的逼真感知与分割的多样三维作物数据集。

Crops3D: a diverse 3D crop dataset for realistic perception and segmentation toward agricultural applications.

作者信息

Zhu Jianzhong, Zhai Ruifang, Ren He, Xie Kai, Du Aobo, He Xinwei, Cui Chenxi, Wang Yinghua, Ye Junli, Wang Jiashi, Jiang Xue, Wang Yulong, Huang Chenglong, Yang Wanneng

机构信息

College of Informatics, Huazhong Agricultural University, Wuhan, 430070, P. R. China.

Engineering Research Center of Intelligent Technology for Agriculture, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, P. R. China.

出版信息

Sci Data. 2024 Dec 27;11(1):1438. doi: 10.1038/s41597-024-04290-0.

Abstract

Point cloud analysis is a crucial task in computer vision. Despite significant advances over the past decade, the developments in agricultural domain have faced challenges due to a scarcity of datasets. To facilitate 3D point cloud research in agriculture community, we introduce Crops3D, the diverse real-world dataset derived from authentic agricultural scenarios. Crops3D distinguishes itself through its unique properties: diversity, authenticity, and complexity. The dataset incorporates data from diverse point cloud acquisition methods, encompassing eight distinct crop types with 1,230 samples, authentically representing crops in the real-world. It stands as the pioneering dataset that comprehensively supports the three critical tasks in 3D crop phenotyping: instance segmentation of individual plants in agricultural settings, plant type perception, and plant organ segmentation. Additionally, the intricate crop structures in Crops3D exhibit higher complexity than available 3D public datasets, showcasing substantial self-occlusion and increased complexity as crops mature. We analyse diverse crop point cloud acquisition methods and evaluate multiple models' performance with the Crops3D dataset.

摘要

点云分析是计算机视觉中的一项关键任务。尽管在过去十年中取得了重大进展,但由于数据集的稀缺,农业领域的发展面临挑战。为了促进农业社区的三维点云研究,我们引入了Crops3D,这是一个源自真实农业场景的多样化真实世界数据集。Crops3D通过其独特的属性脱颖而出:多样性、真实性和复杂性。该数据集包含来自多种点云采集方法的数据,涵盖八种不同的作物类型,有1230个样本,真实地代表了现实世界中的作物。它是首个全面支持三维作物表型分析中三项关键任务的数据集:农业环境中单个植物的实例分割、植物类型感知和植物器官分割。此外,Crops3D中复杂的作物结构比现有的三维公共数据集表现出更高的复杂性,随着作物成熟,展示出大量的自遮挡和增加的复杂性。我们分析了多种作物点云采集方法,并使用Crops3D数据集评估了多个模型的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0a6/11681092/3d521644f763/41597_2024_4290_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验