Suppr超能文献

基于石墨烯增强聚对苯二甲酸乙二醇酯二醇开发的熔融沉积成型工艺参数优化

Fused deposition modeling process parameter optimization on the development of graphene enhanced polyethylene terephthalate glycol.

作者信息

Raja S, Jayalakshmi M, Rusho Maher Ali, Selvaraj Vinoth Kumar, Subramanian Jeyanthi, Yishak Simon, Kumar T Arun

机构信息

Centre for Sustainable Materials and Surface Metamorphosis, Chennai Institute of Technology, Chennai, 600069, Tamilnadu, India.

Department of Mathematics, School of Advanced Science, Vellore Institute of Technology, Vellore, India.

出版信息

Sci Rep. 2024 Dec 28;14(1):30744. doi: 10.1038/s41598-024-80376-4.

Abstract

This study investigates the production of graphene-enhanced polyethylene terephthalate glycol (G-PETG) components using fused deposition modeling (FDM) and evaluates their mechanical properties, contributing to the advancement of additive manufacturing. Trials demonstrated notable improvements in mechanical performance, with optimal printing parameters identified using the Spice Logic Analytical Hierarchy Process (AHP). The effectiveness of this methodology is further compared with the Fuzzy Analytic Hierarchy Process (FAHP) combined with the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). The study revealed significant enhancements, with the ultimate tensile strength (UTS) reaching 69.1 MPa, an average Young's modulus of 735.6 MPa, and an ultimate compressive strength (UCS) of 85.3 MPa. These findings provide valuable insights into optimizing techniques for improving the mechanical performance of G-PETG components, advancing material applications in various industries.

摘要

本研究调查了使用熔融沉积建模(FDM)生产石墨烯增强聚对苯二甲酸乙二醇酯二醇(G-PETG)部件,并评估了它们的机械性能,为增材制造的发展做出了贡献。试验表明机械性能有显著改善,使用Spice Logic层次分析法(AHP)确定了最佳打印参数。该方法的有效性还与模糊层次分析法(FAHP)结合理想解相似排序法(TOPSIS)进行了进一步比较。研究显示有显著增强,极限抗拉强度(UTS)达到69.1MPa,平均杨氏模量为735.6MPa,极限抗压强度(UCS)为85.3MPa。这些发现为优化提高G-PETG部件机械性能的技术提供了有价值的见解,推动了材料在各个行业的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b841/11681164/fe01097fd5ec/41598_2024_80376_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验