Suppr超能文献

利用机器学习方法探索胶体CdSe纳米片的温度依赖光致发光动力学

Exploring temperature-dependent photoluminescence dynamics of colloidal CdSe nanoplatelets using machine learning approach.

作者信息

Malashin Ivan P, Daibagya Daniil, Tynchenko Vadim, Nelyub Vladimir, Borodulin Aleksei, Gantimurov Andrei, Selyukov Alexandr, Ambrozevich Sergey, Vasiliev Roman

机构信息

Bauman Moscow State Technical University, Moscow, Russia, 105005.

P.N. Lebedev Physical Institute of The Russian Academy of Sciences, Moscow, Russia, 119991.

出版信息

Sci Rep. 2024 Dec 28;14(1):30878. doi: 10.1038/s41598-024-81200-9.

Abstract

The study explore machine learning (ML) techniques to predict temperature-dependent photoluminescence (PL) spectra in colloidal CdSe nanoplatelets (NPLs), leveraging polynomial regression models trained on experimental data from 85 to 270 K spanning temperatures to forecast PL spectra backward to 0 K and forward to 300 K. 6th-degree polynomial models with Tweedie regression were optimal for band energy ([Formula: see text]) predictions up to 300 K, while 9th-degree models with LassoLars and Linear Regression regressors were suitable for backward predictions to 0 K. For exciton energy ([Formula: see text]), the Lasso model of degree 5 and the Ridge model of degree 4 performed well up to 300 K, while the Tweedie model of degree 2 and Theil-Sen model of degree 2 showed promise for predictions to 0 K. Furthermore, a GA-based approach was utilized to fit experimental data to theoretical model of Fan and Varshni equations, facilitating a comparative analysis with the ML-predicted curves.

摘要

该研究探索了机器学习(ML)技术,以预测胶体CdSe纳米片(NPLs)中与温度相关的光致发光(PL)光谱,利用基于85至270 K温度范围内实验数据训练的多项式回归模型,将PL光谱向后预测至0 K并向前预测至300 K。采用Tweedie回归的六次多项式模型对于高达300 K的带隙能量([公式:见正文])预测最为理想,而采用LassoLars和线性回归回归器的九次模型适用于向后预测至0 K。对于激子能量([公式:见正文]),五次Lasso模型和四次岭模型在高达300 K时表现良好,而二次Tweedie模型和二次Theil-Sen模型在预测至0 K时显示出前景。此外,还利用基于遗传算法的方法将实验数据拟合到Fan和Varshni方程的理论模型中,便于与ML预测曲线进行对比分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da15/11681189/2283e46e34fc/41598_2024_81200_Fig1_HTML.jpg

相似文献

3
Observation of Electron Shakeup in CdSe/CdS Core/Shell Nanoplatelets.
Nano Lett. 2019 Dec 11;19(12):8495-8502. doi: 10.1021/acs.nanolett.9b02856. Epub 2019 Nov 13.
4
Trion Emission Dominates the Low-Temperature Photoluminescence of CdSe Nanoplatelets.
Nano Lett. 2020 Aug 12;20(8):5814-5820. doi: 10.1021/acs.nanolett.0c01707. Epub 2020 Jul 7.
5
Effect of Lateral Size and Surface Passivation on the Near-Band-Edge Excitonic Emission from Quasi-Two-Dimensional CdSe Nanoplatelets.
ACS Appl Mater Interfaces. 2019 Nov 6;11(44):41821-41827. doi: 10.1021/acsami.9b16044. Epub 2019 Oct 28.
6
Temperature-Dependent Photoluminescent Properties of PbSe Nanoplatelets.
Nanomaterials (Basel). 2020 Dec 21;10(12):2570. doi: 10.3390/nano10122570.
7
Pressure-dependent optical behaviors of colloidal CdSe nanoplatelets.
Nanoscale. 2015 May 21;7(19):8835-42. doi: 10.1039/c4nr07589g.
8
Exciton Spatial Coherence and Optical Gain in Colloidal Two-Dimensional Cadmium Chalcogenide Nanoplatelets.
Acc Chem Res. 2019 Sep 17;52(9):2684-2693. doi: 10.1021/acs.accounts.9b00252. Epub 2019 Aug 21.
10
Time-Resolved Stark Spectroscopy in CdSe Nanoplatelets: Exciton Binding Energy, Polarizability, and Field-Dependent Radiative Rates.
Nano Lett. 2016 Oct 12;16(10):6576-6583. doi: 10.1021/acs.nanolett.6b03244. Epub 2016 Sep 23.

本文引用的文献

1
Charge Transfer from Quantum-Confined 0D, 1D, and 2D Nanocrystals.
Chem Rev. 2024 May 8;124(9):5695-5763. doi: 10.1021/acs.chemrev.3c00742. Epub 2024 Apr 17.
2
3
AgS-Decorated One-Dimensional CdS Nanorods for Rapid Detection and Effective Discrimination of n-Butanol.
Nanomaterials (Basel). 2024 Feb 21;14(5):394. doi: 10.3390/nano14050394.
4
Gaussian Process Regression-Based Near-Infrared d-Luciferin Analogue Design Using Mutation-Controlled Graph-Based Genetic Algorithm.
J Chem Inf Model. 2024 Mar 11;64(5):1522-1532. doi: 10.1021/acs.jcim.3c00870. Epub 2024 Feb 16.
5
Enhanced Neural Network-Based Univariate Time-Series Forecasting Model for Big Data.
Big Data. 2024 Apr;12(2):83-99. doi: 10.1089/big.2022.0155. Epub 2023 Feb 24.
7
Using Machine Learning to make nanomaterials sustainable.
Sci Total Environ. 2023 Feb 10;859(Pt 2):160303. doi: 10.1016/j.scitotenv.2022.160303. Epub 2022 Nov 18.
8
CdSe/CdSeS Nanoplatelet Light-Emitting Diodes with Ultrapure Green Color and High External Quantum Efficiency.
J Phys Chem Lett. 2022 Oct 6;13(39):9051-9057. doi: 10.1021/acs.jpclett.2c02633. Epub 2022 Sep 25.
9
Machine Learning Models for Predicting Cytotoxicity of Nanomaterials.
Chem Res Toxicol. 2022 Feb 21;35(2):125-139. doi: 10.1021/acs.chemrestox.1c00310. Epub 2022 Jan 14.
10
Machine learning in combinatorial polymer chemistry.
Nat Rev Mater. 2021 Aug;6:642-644. doi: 10.1038/s41578-021-00282-3. Epub 2021 Feb 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验