Malashin Ivan P, Daibagya Daniil, Tynchenko Vadim, Nelyub Vladimir, Borodulin Aleksei, Gantimurov Andrei, Selyukov Alexandr, Ambrozevich Sergey, Vasiliev Roman
Bauman Moscow State Technical University, Moscow, Russia, 105005.
P.N. Lebedev Physical Institute of The Russian Academy of Sciences, Moscow, Russia, 119991.
Sci Rep. 2024 Dec 28;14(1):30878. doi: 10.1038/s41598-024-81200-9.
The study explore machine learning (ML) techniques to predict temperature-dependent photoluminescence (PL) spectra in colloidal CdSe nanoplatelets (NPLs), leveraging polynomial regression models trained on experimental data from 85 to 270 K spanning temperatures to forecast PL spectra backward to 0 K and forward to 300 K. 6th-degree polynomial models with Tweedie regression were optimal for band energy ([Formula: see text]) predictions up to 300 K, while 9th-degree models with LassoLars and Linear Regression regressors were suitable for backward predictions to 0 K. For exciton energy ([Formula: see text]), the Lasso model of degree 5 and the Ridge model of degree 4 performed well up to 300 K, while the Tweedie model of degree 2 and Theil-Sen model of degree 2 showed promise for predictions to 0 K. Furthermore, a GA-based approach was utilized to fit experimental data to theoretical model of Fan and Varshni equations, facilitating a comparative analysis with the ML-predicted curves.
该研究探索了机器学习(ML)技术,以预测胶体CdSe纳米片(NPLs)中与温度相关的光致发光(PL)光谱,利用基于85至270 K温度范围内实验数据训练的多项式回归模型,将PL光谱向后预测至0 K并向前预测至300 K。采用Tweedie回归的六次多项式模型对于高达300 K的带隙能量([公式:见正文])预测最为理想,而采用LassoLars和线性回归回归器的九次模型适用于向后预测至0 K。对于激子能量([公式:见正文]),五次Lasso模型和四次岭模型在高达300 K时表现良好,而二次Tweedie模型和二次Theil-Sen模型在预测至0 K时显示出前景。此外,还利用基于遗传算法的方法将实验数据拟合到Fan和Varshni方程的理论模型中,便于与ML预测曲线进行对比分析。