Suppr超能文献

一种基于灰狼优化算法-自适应神经模糊推理系统(GWO-ANFIS)控制器的用于并网电动汽车充电站的稳健最大功率点跟踪(MPPT)框架。

A robust MPPT framework based on GWO-ANFIS controller for grid-tied EV charging stations.

作者信息

Mazumdar Debabrata, Biswas Pabitra Kumar, Sain Chiranjit, Ahmad Furkan, Al-Fagih Luluwah

机构信息

Department of Electrical Engineering, National Institute of Technology Mizoram, Aizawl, 796012, India.

Department of Electrical Engineering, Ghani Khan Choudhury Institute of Engineering & Technology, Malda, India.

出版信息

Sci Rep. 2024 Dec 28;14(1):30955. doi: 10.1038/s41598-024-81937-3.

Abstract

As electric vehicles gain popularity, there has been a lot of interest in supporting their continued development with the aim of enhancing their dependability, environmental advantages, and charging efficiency. The scheduling of navigation and charging for electric vehicles is among the most well-known research topics. For optimal navigation and charging scheduling, the coupled network state between the transportation and power networks must be met; moreover, the scheduling outcomes might significantly impact these networks. To address climate challenges, relying only on fossil fuel-based infrastructure for electric car charging is insufficient. Consequently, Multi-Energy Integrated EV charging stations have emerged as a workable solution that seamlessly integrates grid power, renewable energy sources-particularly solar energy-and EV charging needs. The enhanced grey wolf optimised (GWO) ANFIS controller for Maximum Power Point Tracking (MPPT), standby battery systems, solar power, neural network-integrated grids, and sophisticated control algorithms like PID controller are all proposed in this article as energy-efficient charging terminals for electric vehicles. Moreover, authors had considered four conditional case study and with the help of MATLAB/Simulink 2018a software, the design is thoroughly examined and assessed, providing a viable route for an efficient and sustainable EV charging infrastructure.

摘要

随着电动汽车越来越受欢迎,人们对支持其持续发展产生了浓厚兴趣,目的是提高其可靠性、环境优势和充电效率。电动汽车的导航和充电调度是最著名的研究课题之一。为了实现最佳的导航和充电调度,必须满足交通网络和电力网络之间的耦合网络状态;此外,调度结果可能会对这些网络产生重大影响。为应对气候挑战,仅依靠基于化石燃料的基础设施为电动汽车充电是不够的。因此,多能源集成电动汽车充电站已成为一种可行的解决方案,它将电网电力、可再生能源(特别是太阳能)和电动汽车充电需求无缝集成。本文提出了用于最大功率点跟踪(MPPT)的增强型灰狼优化(GWO)自适应神经模糊推理系统(ANFIS)控制器、备用电池系统、太阳能、神经网络集成电网以及诸如PID控制器等先进控制算法,作为电动汽车的节能充电终端。此外,作者考虑了四个条件案例研究,并借助MATLAB/Simulink 2018a软件对设计进行了全面检查和评估,为高效且可持续的电动汽车充电基础设施提供了一条可行途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22e8/11680877/be97953341f4/41598_2024_81937_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验