Hakam Youness, Ahessab Hajar, Tabaa Mohamed, ELHadadi Benachi, Gaga Ahmed
Research Laboratory of Physics and Engineers Sciences (LRPSI), Research Team in Embedded Systems, Engineering, Automation, Signal, Telecommunications and Intelligent Materials (ISASTM), Polydisciplinary Faculty (FPBM), Sultan Moulay Slimane University (USMS), Beni Mellal, Morocco.
Multidisciplinary Laboratory of Research and Innovation (LPRI), Moroccan School of Engineering Sciences (EMSI), Casablanca, Morocco.
Sci Prog. 2025 Apr-Jun;108(2):368504251331835. doi: 10.1177/00368504251331835. Epub 2025 Apr 1.
Photovoltaic (PV) systems experience significant power losses under partial shading conditions (PSCs) due to mismatched module outputs, limiting maximum power extraction. To address this issue, a hybrid maximum power point tracking (MPPT) algorithm, artificial neural network-Grey wolf optimization (ANN-GWO), is introduced, combining ANNs and GWOs. ANN reduces tracking time to approximately 0.02 seconds during rapid weather fluctuations, while GWO enhances power extraction under severe shading conditions. On the grid side, model predictive control (MPC) optimizes single-phase inverter operation, ensuring stable grid integration and efficient power transfer for residential and microgrid-based electric vehicle (EV) charging. This approach improves dynamic tracking efficiency by over 9% and reduces MPPT tracking time by up to 99.98% compared to conventional methods. Additionally, MPC lowers total harmonic distortion (THD) from 2.56% to 1.56%, enhancing power quality and response time. Implemented on the Texas Instruments TMS320F28379D DSP, the system ensures fast and stable power tracking, outperforming traditional control methods. Both simulations and real-world experiments validate the proposed system, demonstrating significant advancements in PV-based EV charging performance. This study focuses on developing a Hybrid ANN-GWO MPPT combined with MPC-based inverter control to enhance PV-powered EV charging under PSC, aiming to improve tracking efficiency, reduce THD, and implement a real-time DSP-based experimental setup.
由于模块输出不匹配,光伏(PV)系统在部分阴影条件(PSC)下会经历显著的功率损耗,这限制了最大功率提取。为了解决这个问题,引入了一种混合最大功率点跟踪(MPPT)算法,即人工神经网络-灰狼优化(ANN-GWO),它结合了人工神经网络和灰狼优化算法。在快速天气波动期间,人工神经网络将跟踪时间缩短至约0.02秒,而灰狼优化算法则在严重阴影条件下提高功率提取。在电网侧,模型预测控制(MPC)优化单相逆变器运行,确保住宅和基于微电网的电动汽车(EV)充电时电网的稳定集成和高效功率传输。与传统方法相比,这种方法将动态跟踪效率提高了9%以上,并将MPPT跟踪时间减少了高达99.98%。此外,模型预测控制将总谐波失真(THD)从2.56%降低到1.56%,提高了电能质量和响应时间。该系统基于德州仪器TMS320F28379D数字信号处理器实现,确保了快速稳定的功率跟踪,优于传统控制方法。仿真和实际实验都验证了所提出的系统,证明了基于光伏的电动汽车充电性能有显著进步。本研究专注于开发一种结合基于模型预测控制的逆变器控制的混合人工神经网络-灰狼优化MPPT,以增强部分阴影条件下基于光伏的电动汽车充电性能,旨在提高跟踪效率、降低总谐波失真,并实现基于实时数字信号处理器的实验装置。