Suppr超能文献

基于肿瘤干性基因的三阴性乳腺癌预后模型。

Prognostic model based on tumor stemness genes for triple-negative breast cancer.

作者信息

Ouyang Min, Gui Yajun, Li Namei, Zhao Lin

机构信息

Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.

Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.

出版信息

Sci Rep. 2024 Dec 28;14(1):30855. doi: 10.1038/s41598-024-81503-x.

Abstract

Triple-negative breast cancer (TNBC) is an aggressive disease with a poor prognosis and lack of effective treatment. In this study, TNBCs were analyzed from the perspective of tumor stemness based on scRNA-seq data. The analysis showed that tumor cells of TNBC were divided into 4 subtypes, with subtype 2 having the highest stemness score. A prognostic model of 7 tumor stemness-related genes (AP2S1, CHML, FABP7, FADS2, PAXX, SDC1 and TOP2A) was developed based on marker genes of this subtype and TCGA data, and the predictive power of this feature was well validated in different clinical subgroups. TNBC patients in the low TS group had a better prognosis. In addition, drug sensitivity analysis showed that patients in the high TS (tumor stemness) score group were more sensitive to PD-L1 inhibitors and the chemotherapeutic agents. In conclusion, our study developed a prognostic model based on TNBC tumor stemness cell marker genes, which has a good ability to predict the prognosis of TNBC patients and the effect of response to drug therapy.

摘要

三阴性乳腺癌(TNBC)是一种侵袭性疾病,预后较差且缺乏有效治疗方法。在本研究中,基于单细胞RNA测序(scRNA-seq)数据从肿瘤干性角度对TNBC进行了分析。分析表明,TNBC的肿瘤细胞分为4个亚型,其中亚型2的干性评分最高。基于该亚型的标记基因和TCGA数据,构建了一个由7个肿瘤干性相关基因(AP2S1、CHML、FABP7、FADS2、PAXX、SDC1和TOP2A)组成的预后模型,该特征的预测能力在不同临床亚组中得到了充分验证。低肿瘤干性(TS)组的TNBC患者预后较好。此外,药物敏感性分析表明,高TS(肿瘤干性)评分组的患者对PD-L1抑制剂和化疗药物更敏感。总之,我们的研究基于TNBC肿瘤干细胞标记基因构建了一个预后模型,该模型具有良好的预测TNBC患者预后及药物治疗反应效果的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e81/11680876/c7a5a5c36f84/41598_2024_81503_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验