Suppr超能文献

在机器人远程操作工作量评估中,性能指标比生理指标表现更优。

Performance metrics outperform physiological indicators in robotic teleoperation workload assessment.

作者信息

Odoh Gift, Landowska Aleksandra, Crowe Emily M, Benali Khairidine, Cobb Sue, Wilson Max L, Maior Horia A, Kucukyilmaz Ayse

机构信息

School of Computer Science, University of Nottingham, Nottingham, UK.

School of Psychology, University of Nottingham, Nottingham, UK.

出版信息

Sci Rep. 2024 Dec 28;14(1):30984. doi: 10.1038/s41598-024-82112-4.

Abstract

Robotics holds the potential to streamline the execution of repetitive and dangerous tasks, which are difficult or impossible for a human operator. However, in complex scenarios, such as nuclear waste management or disaster response, full automation often proves unfeasible due to the diverse and intricate nature of tasks, coupled with the unpredictable hazards, and is typically prevented by stringent regulatory frameworks. Consequently, the predominant approach to managing activities in such settings remains human teleoperation. Teleoperation can be demanding, especially in high-stress situations, and involves a complex blend of both cognitive and physical workload. We present an experiment to explore a range of physiological and performance-related metrics for workload assessment during robotic teleoperation. Thirty-five participants performed a teleoperation task, during which we manipulated cognitive and physical workload conditions. We recorded multiple metrics, including brain activity using functional Near-Infrared Spectroscopy, galvanic skin responses, cardiovascular responses, subjective workload ratings, task and robot performance data. Our results suggest that robotic teleoperation performance may be the most robust metric for distinguishing between different levels of workload experienced during teleoperation, with most physiological measures becoming insignificant to distinguish high cognitive workload.

摘要

机器人技术有望简化重复性和危险性任务的执行,而这些任务对人类操作员来说困难或无法完成。然而,在诸如核废料管理或灾难应对等复杂场景中,由于任务的多样性和复杂性,再加上不可预测的危险,完全自动化往往被证明是不可行的,而且通常受到严格监管框架的限制。因此,在这种情况下管理活动的主要方法仍然是人工遥控操作。遥控操作可能要求很高,尤其是在高压力情况下,并且涉及认知和体力工作负荷的复杂混合。我们进行了一项实验,以探索机器人遥控操作过程中用于工作量评估的一系列生理和性能相关指标。35名参与者执行了一项遥控操作任务,在此期间我们操纵了认知和体力工作负荷条件。我们记录了多个指标,包括使用功能性近红外光谱法测量的大脑活动、皮肤电反应、心血管反应、主观工作量评分、任务和机器人性能数据。我们的结果表明,机器人遥控操作性能可能是区分遥控操作过程中不同工作量水平的最可靠指标,而大多数生理指标在区分高认知工作量时变得无关紧要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验