Suppr超能文献

CLARE-XR:基于可解释回归的胸部X光片分类与标签嵌入

CLARE-XR: explainable regression-based classification of chest radiographs with label embeddings.

作者信息

Rocha Joana, Pereira Sofia Cardoso, Sousa Pedro, Campilho Aurélio, Mendonça Ana Maria

机构信息

Institute for Systems and Computer Engineering Technology and Science (INESC-TEC), Porto, 4200-465, Portugal.

Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal.

出版信息

Sci Rep. 2024 Dec 28;14(1):31024. doi: 10.1038/s41598-024-82222-z.

Abstract

An automatic system for pathology classification in chest X-ray scans needs more than predictive performance, since providing explanations is deemed essential for fostering end-user trust, improving decision-making, and regulatory compliance. CLARE-XR is a novel methodology that, when presented with an X-ray image, identifies the associated pathologies and provides explanations based on the presentation of similar cases. The diagnosis is achieved using a regression model that maps an image into a 2D latent space containing the reference coordinates of all findings. The references are generated once through label embedding, before the regression step, by converting the original binary ground-truth annotations to 2D coordinates. The classification is inferred minding the distance from the coordinates of an inference image to the reference coordinates. Furthermore, as the regressor is trained on a known set of images, the distance from the coordinates of an inference image to the coordinates of the training set images also allows retrieving similar instances, mimicking the common clinical practice of comparing scans to confirm diagnoses. This inherently interpretable framework discloses specific classification rules and visual explanations through automatic image retrieval methods, outperforming the multi-label ResNet50 classification baseline across multiple evaluation settings on the NIH ChestX-ray14 dataset.

摘要

用于胸部X光扫描病理分类的自动系统需要的不仅仅是预测性能,因为提供解释对于增强终端用户信任、改善决策制定和符合监管要求至关重要。CLARE-XR是一种新颖的方法,当给出一张X光图像时,它能识别相关病理并基于相似病例的呈现提供解释。诊断是通过一个回归模型实现的,该模型将图像映射到一个二维潜在空间,其中包含所有检查结果的参考坐标。在回归步骤之前,通过将原始的二进制真值标注转换为二维坐标,通过标签嵌入一次性生成参考坐标。分类是通过考虑推理图像的坐标与参考坐标之间的距离来推断的。此外,由于回归器是在一组已知图像上进行训练的,推理图像的坐标与训练集图像坐标之间的距离也允许检索相似实例,这类似于比较扫描以确认诊断的常见临床实践。这个本质上可解释的框架通过自动图像检索方法揭示特定的分类规则和可视化解释,在NIH ChestX-ray14数据集的多个评估设置上优于多标签ResNet50分类基线。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56fa/11681020/21bf4c7b03e9/41598_2024_82222_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验