Suppr超能文献

基于弱监督学习的三维胸部 CT 扫描中的病理学检测和定位。

Weakly-supervised learning-based pathology detection and localization in 3D chest CT scans.

机构信息

CREATIS UMR5220, INSERM U1044, Claude Bernard University Lyon 1, INSA, Lyon, France.

Philips Health Technology innovation, Paris, France.

出版信息

Med Phys. 2024 Nov;51(11):8272-8282. doi: 10.1002/mp.17302. Epub 2024 Aug 14.

Abstract

BACKGROUND

Recent advancements in anomaly detection have paved the way for novel radiological reading assistance tools that support the identification of findings, aimed at saving time. The clinical adoption of such applications requires a low rate of false positives while maintaining high sensitivity.

PURPOSE

In light of recent interest and development in multi pathology identification, we present a novel method, based on a recent contrastive self-supervised approach, for multiple chest-related abnormality identification including low lung density area ("LLDA"), consolidation ("CONS"), nodules ("NOD") and interstitial pattern ("IP"). Our approach alerts radiologists about abnormal regions within a computed tomography (CT) scan by providing 3D localization.

METHODS

We introduce a new method for the classification and localization of multiple chest pathologies in 3D Chest CT scans. Our goal is to distinguish four common chest-related abnormalities: "LLDA", "CONS", "NOD", "IP" and "NORMAL". This method is based on a 3D patch-based classifier with a Resnet backbone encoder pretrained leveraging recent contrastive self supervised approach and a fine-tuned classification head. We leverage the SimCLR contrastive framework for pretraining on an unannotated dataset of randomly selected patches and we then fine-tune it on a labeled dataset. During inference, this classifier generates probability maps for each abnormality across the CT volume, which are aggregated to produce a multi-label patient-level prediction. We compare different training strategies, including random initialization, ImageNet weight initialization, frozen SimCLR pretrained weights and fine-tuned SimCLR pretrained weights. Each training strategy is evaluated on a validation set for hyperparameter selection and tested on a test set. Additionally, we explore the fine-tuned SimCLR pretrained classifier for 3D pathology localization and conduct qualitative evaluation.

RESULTS

Validated on 111 chest scans for hyperparameter selection and subsequently tested on 251 chest scans with multi-abnormalities, our method achieves an AUROC of 0.931 (95% confidence interval [CI]: [0.9034, 0.9557], -value < 0.001) and 0.963 (95% CI: [0.952, 0.976], -value < 0.001) in the multi-label and binary (i.e., normal versus abnormal) settings, respectively. Notably, our method surpasses the area under the receiver operating characteristic (AUROC) threshold of 0.9 for two abnormalities: IP (0.974) and LLDA (0.952), while achieving values of 0.853 and 0.791 for NOD and CONS, respectively. Furthermore, our results highlight the superiority of incorporating contrastive pretraining within the patch classifier, outperforming Imagenet pretraining weights and non-pretrained counterparts with uninitialized weights (F1 score = 0.943, 0.792, and 0.677 respectively). Qualitatively, the method achieved a satisfactory 88.8% completeness rate in localization and maintained an 88.3% accuracy rate against false positives.

CONCLUSIONS

The proposed method integrates self-supervised learning algorithms for pretraining, utilizes a patch-based approach for 3D pathology localization and develops an aggregation method for multi-label prediction at patient-level. It shows promise in efficiently detecting and localizing multiple anomalies within a single scan.

摘要

背景

异常检测的最新进展为支持发现识别的新型放射学阅读辅助工具铺平了道路,旨在节省时间。此类应用程序的临床采用需要保持高灵敏度的同时,降低假阳性率。

目的

鉴于多病理学识别的最新兴趣和发展,我们提出了一种新方法,该方法基于最近的对比自监督方法,用于识别多种胸部相关异常,包括低肺密度区域(“LLDA”)、实变(“CONS”)、结节(“NOD”)和间质模式(“IP”)。我们的方法通过提供 CT 扫描的 3D 定位来提醒放射科医生异常区域。

方法

我们引入了一种用于 3D 胸部 CT 扫描中多种胸部病理学分类和定位的新方法。我们的目标是区分四种常见的胸部相关异常:“LLDA”、“CONS”、“NOD”、“IP”和“NORMAL”。该方法基于具有 Resnet 主干编码器的 3D 补丁分类器,该编码器使用最近的对比自监督方法进行预训练,并具有微调的分类头。我们利用 SimCLR 对比框架在随机选择的补丁的无标注数据集上进行预训练,然后在有标注数据集上进行微调。在推理过程中,该分类器为 CT 体积中的每个异常生成概率图,这些概率图被聚合以生成多标签患者级预测。我们比较了不同的训练策略,包括随机初始化、ImageNet 权重初始化、冻结的 SimCLR 预训练权重和微调的 SimCLR 预训练权重。每个训练策略都在验证集上进行超参数选择评估,并在测试集上进行测试。此外,我们还探索了微调的 SimCLR 预训练分类器进行 3D 病理学定位,并进行了定性评估。

结果

在 111 个胸部扫描上进行超参数选择验证,随后在 251 个具有多种异常的胸部扫描上进行测试,我们的方法在多标签和二进制(即正常与异常)设置下分别实现了 0.931(95%置信区间[CI]:[0.9034,0.9557],-值<0.001)和 0.963(95%CI:[0.952,0.976],-值<0.001)的 AUC 值。值得注意的是,我们的方法在 IP(0.974)和 LLDA(0.952)这两个异常方面超过了 AUC 阈值 0.9,而 NOD 和 CONS 的 AUC 值分别为 0.853 和 0.791。此外,我们的结果突出了在补丁分类器中整合对比预训练的优越性,优于 Imagenet 预训练权重和非预训练权重(具有未初始化权重),分别为 F1 分数=0.943、0.792 和 0.677。定性地,该方法在定位方面达到了令人满意的 88.8%完整性率,并保持了 88.3%的准确性,避免了假阳性。

结论

该方法集成了自监督学习算法进行预训练,利用基于补丁的方法进行 3D 病理学定位,并开发了一种患者级多标签预测的聚合方法。它在高效检测和定位单个扫描中的多种异常方面显示出了前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验