Suppr超能文献

基于胸部 X 光的 14 种胸部疾病分类的三重注意学习。

Triple attention learning for classification of 14 thoracic diseases using chest radiography.

机构信息

National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China.

Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

出版信息

Med Image Anal. 2021 Jan;67:101846. doi: 10.1016/j.media.2020.101846. Epub 2020 Oct 16.

Abstract

Chest X-ray is the most common radiology examinations for the diagnosis of thoracic diseases. However, due to the complexity of pathological abnormalities and lack of detailed annotation of those abnormalities, computer-aided diagnosis (CAD) of thoracic diseases remains challenging. In this paper, we propose the triple-attention learning (A Net) model for this CAD task. This model uses the pre-trained DenseNet-121 as the backbone network for feature extraction, and integrates three attention modules in a unified framework for channel-wise, element-wise, and scale-wise attention learning. Specifically, the channel-wise attention prompts the deep model to emphasize the discriminative channels of feature maps; the element-wise attention enables the deep model to focus on the regions of pathological abnormalities; the scale-wise attention facilitates the deep model to recalibrate the feature maps at different scales. The proposed model has been evaluated on 112,120images in the ChestX-ray14 dataset with the official patient-level data split. Compared to state-of-the-art deep learning models, our model achieves the highest per-class AUC in classifying 13 out of 14 thoracic diseases and the highest average per-class AUC of 0.826 over 14 thoracic diseases.

摘要

胸部 X 光检查是诊断胸部疾病最常用的放射学检查方法。然而,由于病理异常的复杂性和缺乏对这些异常的详细标注,胸部疾病的计算机辅助诊断 (CAD) 仍然具有挑战性。在本文中,我们针对这个 CAD 任务提出了三重注意学习 (A Net) 模型。该模型使用预训练的 DenseNet-121 作为骨干网络进行特征提取,并在统一框架中集成了三个注意模块,用于通道、元素和尺度注意学习。具体来说,通道注意提示深度模型强调特征图的判别通道;元素注意使深度模型专注于病理异常区域;尺度注意有助于深度模型在不同尺度上重新校准特征图。我们的模型在 ChestX-ray14 数据集的 112,120 张图像上进行了评估,使用了官方的患者级数据分割。与最先进的深度学习模型相比,我们的模型在 14 种胸部疾病中的 13 种疾病的分类中达到了最高的每类 AUC,在 14 种胸部疾病中的平均每类 AUC 最高为 0.826。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验