Bhatt Upma, Singh Hardeep, Kalaji Hazem M, Strasser Reto J, Soni Vineet
Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India.
Botany Section, Regional Ayurveda Research Institute, Jaral Pandoh, Mandi-175124, Himachal Pradesh, India.
BMC Plant Biol. 2024 Dec 28;24(1):1268. doi: 10.1186/s12870-024-05751-9.
Desiccation tolerance is a complex phenomenon observed in the lichen Flavoparmelia ceparata. To understand the reactivation process of desiccated thalli, completely dried samples were rehydrated. The rehydration process of this lichen occurs in two phases. The first phase, characterized by rapid rehydration, involves the conversion of non-functional reaction centers (RCs) into functional PSII RCs, and the accumulation of ROS along with the increment in SOD antioxidant enzyme. These coordinated mechanisms initiate the light reaction of photosynthesis by forming active light-harvesting complexes (LHCs). This adaptation ensures efficient recovery, as evidenced by specific energy fluxes (ABS/RC, TR/RC, ET/RC, and DI/RC), phenomenological fluxes (ABS/CS, TR/CS, ET/CS, and DI/CS), quantum efficiencies (ФP, ФE, and ФD), primary and secondary photochemistry, photochemical and non-photochemical quenching, and performance index, highlighting the essential role of rapid water uptake in restoring turgor pressure for cell structure and function maintenance. The interconnected network of antioxidant defenses, including catalase (CAT) and peroxidase (POD), underscores the plant's ability to cope with oxidative stress during resilience. The acid phosphomonoesterase (PME) enzymatic activity corresponds to its role in releasing phosphate for essential cellular functions and post-rehydration thallus growth. The activity of CAT, GPOD, and PME signifies the gradual reactivation of lichen F. caperata. Moreover, the investigation into chlorophyll a fluorescence emphasizes the efficient reactivation of the photosynthetic process in F. caperata. In conclusion, lichen F. caperata demonstrates significant potential for desiccation tolerance through the rapid transformation of chloroplasts, chlorophylls, and PSII RCs from their inactive to active states upon rehydration. This research not only enhances our understanding of desiccation tolerance in resurrection plants but also highlights the importance of lichens, particularly F. caperata, as valuable models for studying plant resilience in challenging environments.
耐旱性是地衣黄褐梅衣中观察到的一种复杂现象。为了了解干燥地衣体的重新激活过程,对完全干燥的样本进行了复水。这种地衣的复水过程分两个阶段进行。第一阶段的特点是快速复水,涉及将无功能的反应中心(RCs)转化为有功能的PSII反应中心,以及活性氧的积累和超氧化物歧化酶(SOD)抗氧化酶的增加。这些协同机制通过形成活性捕光复合体(LHCs)启动光合作用的光反应。这种适应性确保了高效恢复,具体能量通量(ABS/RC、TR/RC、ET/RC和DI/RC)、现象学通量(ABS/CS、TR/CS、ET/CS和DI/CS)、量子效率(ФP、ФE和ФD)、初级和次级光化学、光化学和非光化学猝灭以及性能指数都证明了这一点,突出了快速吸水在恢复膨压以维持细胞结构和功能方面的重要作用。包括过氧化氢酶(CAT)和过氧化物酶(POD)在内的抗氧化防御相互关联的网络,强调了植物在恢复过程中应对氧化应激的能力。酸性磷酸单酯酶(PME)的酶活性与其在释放磷酸盐以满足基本细胞功能和复水后地衣体生长方面的作用相对应。CAT、GPOD和PME的活性表明黄褐梅衣地衣逐渐重新激活。此外,对叶绿素a荧光的研究强调了黄褐梅衣地衣光合作用过程的高效重新激活。总之,黄褐梅衣地衣通过复水时叶绿体、叶绿素和PSII反应中心从无活性状态快速转变为活性状态,展现出显著的耐旱潜力。这项研究不仅增进了我们对复苏植物耐旱性的理解,还突出了地衣,特别是黄褐梅衣,作为研究挑战性环境中植物恢复力的有价值模型的重要性。