Suppr超能文献

地衣皱皮梅衣中的光保护:干燥诱导荧光猝灭的起源

Photoprotection in the lichen Parmelia sulcata: the origins of desiccation-induced fluorescence quenching.

作者信息

Veerman John, Vasil'ev Sergej, Paton Gavin D, Ramanauskas Justin, Bruce Doug

机构信息

Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada L2S 3A1.

出版信息

Plant Physiol. 2007 Nov;145(3):997-1005. doi: 10.1104/pp.107.106872. Epub 2007 Sep 7.

Abstract

Lichens, a symbiotic relationship between a fungus (mycobiont) and a photosynthetic green algae or cyanobacteria (photobiont), belong to an elite group of survivalist organisms termed resurrection species. When lichens are desiccated, they are photosynthetically inactive, but upon rehydration they can perform photosynthesis within seconds. Desiccation is correlated with both a loss of variable chlorophyll a fluorescence and a decrease in overall fluorescence yield. The fluorescence quenching likely reflects photoprotection mechanisms that may be based on desiccation-induced changes in lichen structure that limit light exposure to the photobiont (sunshade effect) and/or active quenching of excitation energy absorbed by the photosynthetic apparatus. To separate and quantify these possible mechanisms, we have investigated the origins of fluorescence quenching in desiccated lichens with steady-state, low temperature, and time-resolved chlorophyll fluorescence spectroscopy. We found the most dramatic target of quenching to be photosystem II (PSII), which produces negligible levels of fluorescence in desiccated lichens. We show that fluorescence decay in desiccated lichens was dominated by a short lifetime, long-wavelength component energetically coupled to PSII. Remaining fluorescence was primarily from PSI and although diminished in amplitude, PSI decay kinetics were unaffected by desiccation. The long-wavelength-quenching species was responsible for most (about 80%) of the fluorescence quenching observed in desiccated lichens; the rest of the quenching was attributed to the sunshade effect induced by structural changes in the lichen thallus.

摘要

地衣是真菌(菌共生体)与光合绿藻或蓝细菌(光共生体)之间的一种共生关系,属于被称为复苏物种的精英生存生物群体。当地衣脱水时,它们在光合作用上是不活跃的,但重新水化后,它们能在几秒钟内进行光合作用。脱水与可变叶绿素a荧光的丧失以及总荧光产量的降低相关。荧光猝灭可能反映了光保护机制,该机制可能基于脱水诱导的地衣结构变化,这种变化限制了光对光共生体的照射(遮阳效应)和/或对光合装置吸收的激发能的主动猝灭。为了分离和量化这些可能的机制,我们用稳态、低温和时间分辨叶绿素荧光光谱研究了脱水地衣中荧光猝灭的起源。我们发现猝灭的最显著目标是光系统II(PSII),它在脱水地衣中产生的荧光水平可忽略不计。我们表明,脱水地衣中的荧光衰减主要由与PSII能量耦合的短寿命、长波长成分主导。剩余的荧光主要来自PSI,尽管其幅度减小,但PSI的衰减动力学不受脱水影响。长波长猝灭物种是脱水地衣中观察到的大部分(约80%)荧光猝灭的原因;其余的猝灭归因于地衣叶状体结构变化引起的遮阳效应。

相似文献

1
Photoprotection in the lichen Parmelia sulcata: the origins of desiccation-induced fluorescence quenching.
Plant Physiol. 2007 Nov;145(3):997-1005. doi: 10.1104/pp.107.106872. Epub 2007 Sep 7.
2
Activation of mechanisms of photoprotection by desiccation and by light: poikilohydric photoautotrophs.
J Exp Bot. 2007;58(11):2745-59. doi: 10.1093/jxb/erm139. Epub 2007 Jul 3.
3
Photoprotection of reaction centers: thermal dissipation of absorbed light energy vs charge separation in lichens.
Physiol Plant. 2011 May;142(1):65-78. doi: 10.1111/j.1399-3054.2010.01417.x. Epub 2010 Oct 28.
5
Survey of the occurrence of desiccation-induced quenching of basal fluorescence in 28 species of green microalgae.
Planta. 2018 Sep;248(3):601-612. doi: 10.1007/s00425-018-2925-7. Epub 2018 May 30.
6
Fluorescence quenching in the lichen Peltigera aphthosa due to desiccation.
Plant Physiol Biochem. 2014 Aug;81:67-73. doi: 10.1016/j.plaphy.2014.01.005. Epub 2014 Jan 22.
7
Photoprotection of green plants: a mechanism of ultra-fast thermal energy dissipation in desiccated lichens.
Planta. 2008 Sep;228(4):641-50. doi: 10.1007/s00425-008-0766-5. Epub 2008 Jun 28.
9
Desiccation-induced non-radiative dissipation in isolated green lichen algae.
Photosynth Res. 2012 Sep;113(1-3):239-47. doi: 10.1007/s11120-012-9771-4. Epub 2012 Jul 26.
10
Responses to desiccation stress in lichens are different from those in their photobionts.
Plant Cell Physiol. 2009 Apr;50(4):879-88. doi: 10.1093/pcp/pcp043. Epub 2009 Mar 20.

引用本文的文献

1
The long-term effect of removing the UV-protectant usnic acid from the thalli of the lichen .
Mycol Prog. 2022;21(9):83. doi: 10.1007/s11557-022-01831-y. Epub 2022 Sep 1.
3
Advances in Understanding of Desiccation Tolerance of Lichens and Lichen-Forming Algae.
Plants (Basel). 2021 Apr 20;10(4):807. doi: 10.3390/plants10040807.
6
Survey of the occurrence of desiccation-induced quenching of basal fluorescence in 28 species of green microalgae.
Planta. 2018 Sep;248(3):601-612. doi: 10.1007/s00425-018-2925-7. Epub 2018 May 30.
9
Ozone and desiccation tolerance in chlorolichens are intimately connected: a case study based on two species with different ecology.
Environ Sci Pollut Res Int. 2018 Mar;25(9):8089-8103. doi: 10.1007/s11356-017-9444-0. Epub 2017 Jun 23.

本文引用的文献

2
The carotenoid zeaxanthin and 'high-energy-state quenching' of chlorophyll fluorescence.
Photosynth Res. 1990 Sep;25(3):187-97. doi: 10.1007/BF00033160.
7
A new fluorescence band F689 in photosystem II revealed by picosecond analysis at 4-77 K: function of two terminal energy sinks F689 and F695 in PS II.
Biochim Biophys Acta. 2006 Dec;1757(12):1657-68. doi: 10.1016/j.bbabio.2006.09.007. Epub 2006 Sep 30.
9
10
Molecular basis of photoprotection and control of photosynthetic light-harvesting.
Nature. 2005 Jul 7;436(7047):134-7. doi: 10.1038/nature03795.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验