Suppr超能文献

使用神经网络势对Ti-V-Nb-Mo碳化物MXenes进行高通量探索及其作为析氢反应催化剂的评估

High-Throughput Exploration of Ti-V-Nb-Mo Carbide MXenes Using Neural Network Potentials and Their Evaluation as Catalysts for Hydrogen Evolution Reaction.

作者信息

Mudassir Mohammed Wasay, Goverapet Srinivasan Sriram, Mynam Mahesh, Rai Beena

机构信息

TCS Research, Tata Consultancy Services, Deccan Park, Madhapur, Hyderabad 500081, India.

TCS Research, IIT Madras Research Park, Kanagam Road, Taramani, Chennai 600 113, India.

出版信息

ACS Appl Mater Interfaces. 2025 Jan 8;17(1):1127-1138. doi: 10.1021/acsami.4c16965. Epub 2024 Dec 28.

Abstract

Realization of a sustainable hydrogen economy in the future requires the development of efficient and cost-effective catalysts for its production at scale. MXenes (MX) are a class of 2D materials with 'n' layers of carbon or nitrogen (X) interleaved by 'n+1' layers of transition metal (M) and have emerged as promising materials for various applications including catalysts for hydrogen evolution reaction (HER). Their properties are intimately related to both their composition and their atomic structure. Recently, high entropy MXenes were synthesized, opening a vast compositional space of potentially stable and functionally superior materials. Detailed atomistic modeling enables us to systematically explore this extensive design space, which is otherwise infeasible in experiments. We have developed a Neural Network Potential (NNP) to model (TiVNbMo)C MXenes (x+y+z+p = 1; n = 1,2,3) by training against Density Functional Theory (DFT) data in an active learning fashion. We then used the developed NNP to perform hybrid Monte Carlo-Molecular Dynamics (MC-MD) simulations to identify thermodynamically stable compositions and investigate the relative arrangement of transition metal atoms within and across layers. Thermodynamic stability increased with Mo content and its presence on the surface layer. We further investigated the catalytic performance of stable MXenes for the HER and observed that the center of the oxygen p-band (ε) correlated well with the energy of adsorption of a hydrogen atom ΔG(*H). Subsurface metal atoms significantly influenced the ΔG(*H) values at the surface via both ligand and strain effects. Our work expands the space of potentially stable MXene compositions, providing targets for synthesis and their evaluation in various applications.

摘要

未来实现可持续氢经济需要开发高效且具有成本效益的规模化制氢催化剂。MXenes(MX)是一类二维材料,由“n”层碳或氮(X)夹在“n + 1”层过渡金属(M)之间组成,已成为包括析氢反应(HER)催化剂在内的各种应用的有前景材料。它们的性质与其组成和原子结构密切相关。最近,高熵MXenes被合成出来,开辟了一个潜在稳定且功能优越材料的广阔组成空间。详细的原子模型使我们能够系统地探索这个广阔的设计空间,否则在实验中是不可行的。我们通过以主动学习的方式针对密度泛函理论(DFT)数据进行训练,开发了一种神经网络势(NNP)来对(TiVNbMo)C MXenes(x + y + z + p = 1;n = 1,2,3)进行建模。然后我们使用开发的NNP进行混合蒙特卡罗 - 分子动力学(MC - MD)模拟,以识别热力学稳定的组成,并研究过渡金属原子在层内和跨层的相对排列。热力学稳定性随Mo含量及其在表面层的存在而增加。我们进一步研究了稳定的MXenes对HER的催化性能,观察到氧p带中心(ε)与氢原子吸附能ΔG(*H)有很好的相关性。次表面金属原子通过配体和应变效应显著影响表面的ΔG(*H)值。我们的工作扩展了潜在稳定的MXene组成空间,为合成及其在各种应用中的评估提供了目标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验