Alizadeh Zahra, Mazloum-Ardakani Mohammad, Zhu Yangzhi, Seidi Farzad
Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741, Islamic Republic of Iran.
Terasaki Institute for Biomedical Innovation, Los Angeles, California 91367, United States.
Langmuir. 2025 Jan 14;41(1):66-78. doi: 10.1021/acs.langmuir.4c02451. Epub 2024 Dec 28.
This study reports the development of an innovative electrochemical sensor based on organometallic framework nanostructures for detecting valganciclovir (VLCV). VLCV is employed in the treatment of cytomegalovirus retinitis in AIDS patients. Rational design of nanoarchitectures for electroactive materials is a crucial approach for boosting their electrocatalytic performance. Herein, Lisianthus flower-inspired Ni-Ce-metal-organic framework (MOF), Ni-MOF, and rod-inspired Ce-MOF were synthesized by the solvothermal method. An electrochemical sensor for VLCV was developed by employing a multilayer approach using Lisianthus flower-inspired Ni-Ce metal-organic framework/multiwall carbon nanotubes (Ni-Ce-MOF/MWCNTs) modification on a glassy carbon electrode (GCE). Incorporating a bimetallic Ni-Ce-MOF into a conventional conductive material, such as MWCNTs, significantly increases the specific surface area and improves the conductivity and catalytic properties of the MWCNTs. Relative to the rod-inspired Ce-MOF and Ni-MOF, the electrocatalytic performance of the Lisianthus flower-inspired Ni-Ce-MOF coated on MWCNTs surpasses that of the rod-inspired Ce-MOF, showcasing enhanced performance in VLCV oxidation. This superiority arises from their enhanced electrical conductivity and enlarged surface area. The Lisianthus flower-inspired Ni-Ce-MOF/MWCNTs/GCE demonstrated extensive linear ranges (ranging from 4.0 to 3800.0 nM), a lower detection limit (1.4 nM), remarkable selectivity, and sustained stability over an extended period in the context of VLCV sensing. The real samples underwent analysis through using both electrochemical and UV-vis spectrophotometry methods, and the findings from both methods exhibited no substantial difference, validating the sensor's remarkable practical performance. These results suggest that Lisianthus flower-inspired Ni-Ce-MOF/MWCNTs/GCE electrocatalysts provide a promising sensing platform for analyzing biological samples.
本研究报告了一种基于有机金属框架纳米结构的创新型电化学传感器的开发,用于检测缬更昔洛韦(VLCV)。VLCV用于治疗艾滋病患者的巨细胞病毒性视网膜炎。合理设计电活性材料的纳米结构是提高其电催化性能的关键方法。在此,通过溶剂热法合成了洋桔梗花启发的镍铈金属有机框架(MOF)、镍-MOF和棒状启发的铈-MOF。通过在玻碳电极(GCE)上采用多层方法,利用洋桔梗花启发的镍铈金属有机框架/多壁碳纳米管(Ni-Ce-MOF/MWCNTs)修饰,开发了一种用于VLCV的电化学传感器。将双金属Ni-Ce-MOF掺入传统导电材料(如MWCNTs)中,可显著增加比表面积,提高MWCNTs的导电性和催化性能。相对于棒状启发的铈-MOF和镍-MOF,涂覆在MWCNTs上的洋桔梗花启发的Ni-Ce-MOF的电催化性能超过了棒状启发的铈-MOF,在VLCV氧化方面表现出增强的性能。这种优势源于其增强的导电性和扩大的表面积。洋桔梗花启发的Ni-Ce-MOF/MWCNTs/GCE在VLCV传感方面表现出广泛的线性范围(4.0至3800.0 nM)、较低的检测限(1.4 nM)、出色的选择性和长时间的持续稳定性。通过电化学和紫外可见分光光度法对实际样品进行分析,两种方法的结果没有显著差异,验证了该传感器出色的实际性能。这些结果表明,洋桔梗花启发的Ni-Ce-MOF/MWCNTs/GCE电催化剂为分析生物样品提供了一个有前景的传感平台。