Suppr超能文献

利用可查找、可访问、可互操作、可重用(FAIR)的国家数据流以及患者和公众参与,监测瑞士大学医院内科患者的低价值医疗:LUCID研究方案。

Monitoring low-value care in medical patients from Swiss university hospitals using a Findable, Accessible, Interoperable, Reusable (FAIR) national data stream and patient and public involvement: LUCID study protocol.

作者信息

Guffi Tommaso, Ehrsam Julien, Débieux Marie, Rossel Jean-Benoît, Crevier Marie-Josée, Reny Jean-Luc, Stirnemann Jerome, Meier Christoph A, Aujesky Drahomir, Bassetti Stefano, Aubert Carole Elodie, Méan Marie

机构信息

Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland

Division of Internal Medicine, Universitätsspital Zürich, Zurich, Switzerland.

出版信息

BMJ Open. 2024 Dec 27;14(12):e089662. doi: 10.1136/bmjopen-2024-089662.

Abstract

INTRODUCTION

Healthcare practices providing minimal or no benefit to recipients have been estimated to represent 20% of healthcare costs. However, defining, measuring and monitoring low-value care (LVC) and its downstream consequences remain a major challenge. The purpose of the National Data Stream (LUCID NDS) is to identify and monitor LVC in medical inpatients using routinely collected hospital data.

METHODS AND ANALYSIS

This protocol describes a multistep approach to the identification and surveillance of LVC: (1) creating an NDS based on Findable, Accessible, Interoperable, Reusable (FAIR) principles using routinely collected hospital data from medical inpatients who signed a general consent for data reuse from 2014 onwards; (2) selecting recommendations applicable to medical inpatients using data from LUCID NDS to develop a comprehensive and robust set of LVC indicators; (3) establishing expert consensus on the most relevant and actionable recommendations to prevent LVC; (4) applying the Strength of Recommendation Taxonomy methodology to assess the level of evidence of recommendations; (5) involving patients and the public at various stages of LUCID NDS; and (6) designing monitoring rules within the LUCID NDS and validating quality measures.

ETHICS AND DISSEMINATION

The ethics committees of all five participating university hospitals (Basel, Bern, Geneva, Lausanne and Zurich) approved LUCID NDS as a national registry on quality of care. We will disseminate our findings in peer-reviewed journals, at professional conferences, and through short reports sent to participating entities and stakeholders; moreover, lay summaries are provided for patients and the broader public on our webpage (www.LUCID-nds.ch).

摘要

引言

据估计,对接受者益处极小或毫无益处的医疗行为占医疗成本的20%。然而,定义、衡量和监测低价值医疗(LVC)及其下游影响仍是一项重大挑战。国家数据流(LUCID NDS)的目的是利用常规收集的医院数据识别和监测内科住院患者的低价值医疗。

方法与分析

本方案描述了一种识别和监测低价值医疗的多步骤方法:(1)基于可查找、可访问、可互操作、可重用(FAIR)原则,利用2014年起签署了数据重用通用同意书的内科住院患者的常规收集医院数据创建国家数据流;(2)使用LUCID NDS的数据选择适用于内科住院患者的建议,以制定一套全面且可靠的低价值医疗指标;(3)就预防低价值医疗的最相关且可操作的建议达成专家共识;(4)应用推荐分级系统方法评估建议的证据水平;(5)让患者和公众参与LUCID NDS的各个阶段;(6)在LUCID NDS内设计监测规则并验证质量指标。

伦理与传播

所有五家参与的大学医院(巴塞尔、伯尔尼、日内瓦、洛桑和苏黎世)的伦理委员会批准将LUCID NDS作为一个关于医疗质量的国家登记处。我们将在同行评审期刊、专业会议上以及通过发送给参与实体和利益相关者的简短报告来传播我们的研究结果;此外,还会在我们的网页(www.LUCID-nds.ch)上为患者和更广泛的公众提供通俗易懂的总结。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b9d/11683918/b959f19a06dc/bmjopen-14-12-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验