Suppr超能文献

全身免疫炎症指数可预测接受PD-1抑制剂治疗的复发/转移性及局部晚期宫颈癌患者的短期预后。

Systemic immune-inflammatory index predict short-term outcome in recurrent/metastatic and locally advanced cervical cancer patients treated with PD-1 inhibitor.

作者信息

Chen Qingqing, Zhai Baoqian, Li Jingjing, Wang Hui, Liu Zhengcao, Shi Runjun, Wu Haohao, Xu Yingying, Ji Shengjun

机构信息

Department of Radiotherapy & Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215001, JiangSu Province, China.

Department of Radiotherapy Oncology, Yancheng City No.1 People's Hospital, The Fourth Affiliated Hospital of Nantong University, Yancheng, 224000, JiangSu Province, China.

出版信息

Sci Rep. 2024 Dec 28;14(1):31528. doi: 10.1038/s41598-024-82976-6.

Abstract

This study aims to assess the predictive value of certain markers of inflammation in patients with locally advanced or recurrent/metastatic cervical cancer who are undergoing treatment with anti-programmed death 1 (PD-1) therapy. A total of 105 patients with cervical cancer, who received treatment involving immunocheckpoint inhibitors (ICIs), were included in this retrospective study. We collected information on various peripheral blood indices, including the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR), systemic immune-inflammation index (SII), and prognostic nutritional index (PNI). To determine the appropriate cutoff values for these inflammatory markers, we performed receiver operating characteristic curve (ROC) analysis. Progression-free survival (PFS) was estimated using the Kaplan-Meier method, and we conducted both univariate and multivariate Cox regression analyses to evaluate the prognostic value of these markers. Out of the 105 patients who received ICI treatment, the median progression-free survival (mPFS) was 19.0 months. We obtained the patients' clinical characteristics, such as age, pathological type, therapy regimen, Figo stage, NLR, PLR, LMR, SII, and PNI from their medical records. The optimal cutoff values for NLR, PLR, LMR, SII, and PNI were determined as 3.76, 218.1, 3.34, 1147.7, 43.75, respectively. In the univariate analysis, age, pathological type, therapy regimen, Figo stage, and LMR were not found to be associated with PFS. However, high NLR(P=0.001), high PLR(P<0.001), high SII(P<0.001), and low PNI (P=0.003)were all associated with shorter PFS. Multivariate analysis indicated that SII (P=0.017) was an independent risk factor for PFS. This study highlights the potential use of SII as a predictor of progression-free survival in cervical cancer patients undergoing immunotherapy.

摘要

本研究旨在评估某些炎症标志物对接受抗程序性死亡1(PD-1)治疗的局部晚期或复发/转移性宫颈癌患者的预测价值。本项回顾性研究共纳入了105例接受免疫检查点抑制剂(ICI)治疗的宫颈癌患者。我们收集了各种外周血指标的信息,包括中性粒细胞与淋巴细胞比值(NLR)、血小板与淋巴细胞比值(PLR)、淋巴细胞与单核细胞比值(LMR)、全身免疫炎症指数(SII)和预后营养指数(PNI)。为确定这些炎症标志物的合适临界值,我们进行了受试者工作特征曲线(ROC)分析。采用Kaplan-Meier法估计无进展生存期(PFS),并进行单因素和多因素Cox回归分析以评估这些标志物的预后价值。在接受ICI治疗的105例患者中,中位无进展生存期(mPFS)为19.0个月。我们从患者病历中获取了患者的临床特征,如年龄、病理类型、治疗方案、国际妇产科联盟(FIGO)分期、NLR、PLR、LMR、SII和PNI。NLR、PLR、LMR、SII和PNI的最佳临界值分别确定为3.76、218.1、3.34、1147.7、43.75。在单因素分析中,未发现年龄、病理类型、治疗方案、FIGO分期和LMR与PFS相关。然而,高NLR(P=0.001)、高PLR(P<0.001)、高SII(P<0.001)和低PNI(P=0.003)均与较短的PFS相关。多因素分析表明,SII(P=0.017)是PFS的独立危险因素。本研究强调了SII作为接受免疫治疗的宫颈癌患者无进展生存期预测指标的潜在用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9549/11682050/b6f6c49eb84c/41598_2024_82976_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验