Zonouri Seyed Abed, Basem Ali, Al-Zahy Younis Mohamed Atiah
Electrical Engineering Department, Razi University, Kermanshah, Iran.
Faculty of Engineering, Warith Al-Anbiyaa University, Karbala, 56001, Iraq.
Sci Rep. 2024 Dec 28;14(1):31473. doi: 10.1038/s41598-024-83066-3.
This study introduces a high-performance 4-channel Metal-Insulator-Metal (MIM) diplexer, employing silver and Teflon, optimized for advanced photonic applications. The proposed diplexer, configured with two novel band-pass filters (BPFs), operates across four distinct wavelength bands (843 nm, 1090 nm, 1452 nm, 1675 nm) by precisely manipulating the passband dimensions. Utilizing Finite-Difference Time-Domain (FDTD) simulations, the designed diplexer achieves exceptional sensitivity values of 3500 nm/RIU, 4250 nm/RIU, 3375 nm/RIU, and 4003 nm/RIU, along with high figures of merit (FOM) ranging from 113.4 to 124.7 1/RIU. Also, the compact design (400 nm × 830 nm) underscores its suitability for integrated photonic circuits and advanced sensing applications. Furthermore, to further enhance accuracy in detecting refractive index (RI) changes, a multilayer perceptron (MLP) neural network was employed, ensuring the highest sensor accuracy. The accuracy of the MIM diplexer's RI measurements was statistically validated through a one-sample t-test, confirming the sensor's reliability. Comparative analysis with existing sensors highlights the diplexer's superior sensitivity and efficiency, setting a new benchmark in optical communication and photonic sensing technologies. This work paves the way for future advancements in miniaturized, high-sensitivity optical devices, offering robust solutions for next-generation communication and sensing systems.
本研究介绍了一种采用银和聚四氟乙烯的高性能四通道金属-绝缘体-金属(MIM)双工器,该双工器针对先进光子应用进行了优化。所提出的双工器配置有两个新型带通滤波器(BPF),通过精确控制通带尺寸,可在四个不同的波长带(843纳米、1090纳米、1452纳米、1675纳米)工作。利用时域有限差分(FDTD)模拟,所设计的双工器实现了3500纳米/RIU、4250纳米/RIU、3375纳米/RIU和4003纳米/RIU的卓越灵敏度值,以及113.4至124.7 1/RIU的高优值(FOM)。此外,紧凑的设计(400纳米×830纳米)突出了其适用于集成光子电路和先进传感应用的特点。此外,为了进一步提高检测折射率(RI)变化的准确性,采用了多层感知器(MLP)神经网络,确保了最高的传感器精度。通过单样本t检验对MIM双工器RI测量的准确性进行了统计验证,证实了该传感器的可靠性。与现有传感器的对比分析突出了双工器卓越的灵敏度和效率,为光通信和光子传感技术树立了新的标杆。这项工作为小型化、高灵敏度光学器件的未来发展铺平了道路,为下一代通信和传感系统提供了强大的解决方案。