Khodaie Ali, Heidarzadeh Hamid, Harzand Farrokhfar Valizadeh
Department of Electrical and Computer Engineering, University of Mohaghegh Ardabili, Ardabil, Iran.
Department of Chemical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran.
Sci Rep. 2025 Jan 2;15(1):433. doi: 10.1038/s41598-024-84761-x.
In this paper, we propose and theoretically investigate a novel multimode refractive index (MMRI) plasmonic optical sensor for detecting various brain cancer cells, leveraging the unique capabilities of split ring resonators (SRRs). The sensor, simulated using the finite-difference time-domain (FDTD) method, exhibits dual resonance modes in its reflection spectrum within the 1500 nm to 3500 nm wavelength range, marking a significant advancement in multimode plasmonic biosensing. Through detailed parametric analysis, we optimize critical dimensional parameters to achieve superior performance. The novelty of this work lies in the dual-mode sensing mechanism, which enables robust detection by exploiting the resonance characteristics of gold, silver, and aluminum. These materials provide tunable and highly sensitive interactions with light, enhancing the sensor's adaptability for a wide range of applications. The results reveal exceptional sensitivity values of 1778.3 nm/RIU, a limit of detection (LOD) of 0.016 RIU, and a high figure of merit (FOM) of 7 RIU, along with a quality factor (QF) of 11.7 in the first resonance mode. The findings show that the designed optical biosensor exhibits high sensitivity, a good LOD, and an acceptable FOM in both resonance modes. So, this work paves the way for future research and development of susceptible, multimode optical sensors for medical diagnostics. The results indicate that the proposed sensor operates effectively across a range of temperatures and angles of radiant light, demonstrating its independence from these variables. This reliability in performance underscores its potential for use in diverse environments, making it a dependable tool for detecting biological samples, including brain cancer cells, irrespective of external conditions.
在本文中,我们提出并从理论上研究了一种新型的多模折射率(MMRI)等离子体光学传感器,该传感器利用裂环谐振器(SRR)的独特功能来检测各种脑癌细胞。该传感器采用时域有限差分(FDTD)方法进行模拟,在1500纳米至3500纳米波长范围内的反射光谱中呈现出双共振模式,这标志着多模等离子体生物传感取得了重大进展。通过详细的参数分析,我们优化了关键尺寸参数以实现卓越性能。这项工作的新颖之处在于其双模式传感机制,该机制通过利用金、银和铝的共振特性实现了可靠检测。这些材料与光提供了可调谐且高度敏感的相互作用,增强了传感器对广泛应用的适应性。结果显示,在第一共振模式下,该传感器具有1778.3纳米/RIU的超高灵敏度值、0.016 RIU的检测限(LOD)、7 RIU的高品质因数(FOM)以及11.7的品质因子(QF)。研究结果表明,所设计的光学生物传感器在两种共振模式下均表现出高灵敏度、良好的LOD和可接受的FOM。因此,这项工作为未来用于医疗诊断的高灵敏度、多模光学传感器的研发铺平了道路。结果表明,所提出的传感器在一系列温度和辐射光角度下均能有效运行,证明了其对这些变量的独立性。这种性能上的可靠性突出了其在各种环境中使用的潜力,使其成为检测包括脑癌细胞在内的生物样品的可靠工具,而不受外部条件的影响。